

D 13143

(Pages : 3)

Name.....

Reg. No.....

**FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY)
EXAMINATION, NOVEMBER 2021**

[November 2020 session for SDE/Private Students]

(CBCSS)

Mathematics

MTH 1C 01—ALGEBRA—I

(2019 Admission onwards)

{Covid instructions are not applicable for PVT/SDE students (November 2020 session)}

Time : Three Hours

Maximum : 30 Weightage

General Instructions

1. In cases where choices are provided, students can attend all questions in each section.
2. The minimum number of questions to be attended from the Section / Part shall remain the same.
3. The instruction if any, to attend a minimum number of questions from each sub section / sub part / sub division may be ignored.
4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions in this part.

Each question has weightage 1.

1. Do the rotations about one particular point P, together with the identity map, form a subgroup of the group of plane isometries ? Why or why not ?
2. Find the order of $(3, 10, 9)$ in $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.
3. Find the order of $5 + \langle 4 \rangle$ in the factor group $\mathbb{Z}_{12} / \langle 4 \rangle$.
4. In the group $G = \mathbb{Z}_{36}$ with $H = \langle 9 \rangle$. List the cosets in G/H , showing the elements in each coset.
5. Show that no group of order 20 is simple.
6. How many different homomorphisms are there of a free group of rank 2 onto \mathbb{Z}_4 ?

Turn over

7. Show that $(a, b : a^3 = 1, b^2 = 1, ba = a^2b)$ gives a group of order 6. Show that it is not cyclic.

8. Find all zeros of $x^3 + 2x + 2$ in \mathbb{Z}_7 .

(8 x 1 = 8)

Part B

Answer any six questions, choosing two from each unit.
Each question has weightage 2.

UNIT 1

9. Find all abelian groups, up to isomorphism, of order 360.

10. State and prove the Fundamental Homomorphism Theorem.

11. Let G be a finite group and X a finite G -set. If r is the number of orbits in X under G ,

$$\text{that } r \cdot |G| = \sum_{g \in G} |X_g|.$$

UNIT 2

12. Let H and K be normal subgroups of a group G with $K \leq H$. Show that $G/H \cong (GK)/K$.

13. If G is a finite group and p divides $|G|$, then prove that the number of Sylow p -subgroups of G is congruent to 1 modulo p and divides $|G|$.

14. If H and K are finite subgroups of a group G , then show that $|HK| = \frac{(|H|)(|K|)}{|H \cap K|}$.

UNIT 3

15. Compute the evaluation homomorphism $\phi_4 : (3x^{106} + 5x^{99} + 2x^{53}) \rightarrow \mathbb{Z}_7$, $F = E = \mathbb{Z}_7$.

16. Show that $f(x) = x^3 + 3x^2 + 2$ viewed in $\mathbb{Z}_5[x]$ is irreducible over \mathbb{Z}_5 .

17. Let $G = \{e, a, b\}$ be a cyclic group of order 3 with identity element e . Write the elements $(2e + 3a + 0b)(4e + 2a + 3b)$ in the group algebra \mathbb{Z}_5G in the form $re + sa + tb$ for r, s, t .

(6 x 2 = 12)

Part C*Answer any two questions.**Each question has weightage 5.*

(a) Prove that the group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} if and only if m and n are relatively prime, that is, the gcd of m and n is 1.

(b) Let H be a subgroup of a group G . Show that left coset multiplication is well defined by the equation $(aH)(bH) = (ab)H$ if and only if H is a normal subgroup of G .

(a) Let G be the additive group of real numbers. Let the action of $\theta \in G$ on the real plane \mathbb{R}^2 be given by rotating the plane counter clockwise about the origin through θ radians. Let P be a point other than the origin in the plane. Show \mathbb{R}^2 is a G -set. Describe geometrically the orbit containing P . Find the group G_p .

(b) Show that the Converse of the Theorem of Lagrange is false.

(a) Prove that every group of prime-power order (that is, every finite p -group) is solvable.

(b) For a prime number p , prove that every group G of order p^2 is abelian.

(a) If F is a field, then prove that every non-constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, non-zero constant) factors in F .

(b) Show that the polynomial $\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$ is irreducible over \mathbb{Q} for any prime p .

(2 × 5 = 10 weightage)