\qquad
\qquad FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2014

(CUCSS)

Mathematics
MT 4C 16—DIFFERENTIAL GEOMETRY

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions. Each question carries 1 weightoge.

1. Show that the graph of any function $f: \mathbb{R}^{n} \rightarrow \mathrm{IR}$ is a level set for some function $\mathrm{F} \mathbb{R}{ }^{-} \rightarrow \mathbb{R}$.
2. Sketch the vector field $\mathrm{X}(\mathrm{X}(p) \quad(\mathbf{P}, \mathbf{X}(p)))$ where $\mathrm{X}(p)=-p$.
3. Sketch the level set $f^{-1}(0)$ and typical values of the vector field ∇f for $p=f^{-1}(0)$ when $\left.f \quad x_{2}\right)=x_{1}^{2}-\quad-1$.
4. Let S be an $(\mathrm{n}-1)$ - surface in \mathbb{R}^{n} given by $\mathrm{S}=f^{-1}(\mathrm{C})$ where $f: U \rightarrow \mathbb{R}$ (U open in \mathbb{R} is such that $\mathrm{V} f(p) \neq 0$ for all p e S$)$. Define the cylinder over S in \mathbb{R}° and show that it is an n -surface in $\mathbb{R}^{\text {- }}$
5. Describe the spherical image of one sheet of 2 -sheeted hyperboloid x ? $-\mathrm{x} 2-x_{3}=\mathbf{4}, \mathbf{x}_{\mathbf{1}}>\mathbf{0}$, oriented

6. Prove that geodesics have constant speed.
7. Let X and Y be smooth vector fields along the parametrized curve $a: I \rightarrow \mathbb{R}^{+1}$. Verify that $[\mathrm{X} \cdot \mathrm{Y}]^{\prime}=\mathrm{Y}+\mathrm{X} \quad$.
8. Define the Weingarten map $L_{p}: S_{p} \rightarrow S_{p}$ (with standard notation).
9. Compute $\nabla_{\mathrm{t}} \mathrm{X}$ where v E III $\mathrm{p}, p \mathrm{ER} \mathrm{R}^{2}$ and X is given by $\mathrm{X}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\mathrm{x}_{\mathbf{i}}, \mathrm{x}_{2}, x_{1}, \mathrm{x}_{2}, x_{2}^{2}\right), v=(1,0,0,1)$.
10. Let C be an oriented plane curve and let $p \mathrm{EC}$. Define : a parametrization of a segment of C containing p.
11. Find the length of the parametrized curve a $\mathbf{I}_{\rightarrow \rightarrow} R^{3}$ where $I=[-1,1]$ and a $(t)=((\cos 3 t, \sin 3 t, 4 t)$.
12. Let S be an oriented n -surface in \mathbb{R}^{n} * and let $p \mathrm{ES}$. Define the first and second fundamental forms of S at p.
13. Show that a parametrized 1 -surface is simply a regular parametrised curve.
14. Let $\phi: v_{1} \rightarrow v_{2}$ and $: v_{2} \quad \mathbb{R}^{k}$ be smooth verify the chain rule $\left.d \quad \phi\right)=d \psi \circ d \phi$.
(14 $\times 1=14$ weightage)

Part B

Answer any seven questions.

Each question carries 2 weightoge.

15. Find the integral curve through $p=(a, b) q$ the vector field X given in question 2.
16. Let $a, b, c \mathrm{E}$ IR be such that $a c-b^{2}>0$ - Determine the maximum and minimum values of the function $ह\left(x_{1}, x_{2}\right)=x i+x_{2}^{2}$ on the ellipse a $x_{1}^{2}+2 b x_{i} x_{2}+c x 2=1$.
17. Let $S c \mathbb{R}^{n+1}$ be an oriented n-surface. Prove that there exists on S exactly two smooth normal vector fields.
18. Choosing an orientation, describe the spherical image of the cylinder $\underset{i=2}{n+1}=_{1}^{x_{1}^{2}}=\mathbf{1}$.
19. Show that a parametrized curve a in the unit sphere $\sum_{i=1}^{n+1} x i=1$ is a geodesic iff (if and only if) it is of the form

$$
\mathrm{a}(t)=(\cos a t) e_{\boldsymbol{Z}}+(\sin a t) e_{2}
$$

for some orthogonal pair of unit vectors $\left\{e_{1}, e_{2}\right\}$ in \mathbb{R}^{*} and some a E R
20. Let S be the n -sphere $\sum_{i=1}^{\mathrm{n}+1} x_{i}^{2}=r^{2}$ oriented by the inward unit normal vector field. Prove that the Weingarten map of S is multiplication by ${ }_{r}^{-}(r>0)$
21. "Local parametrization of plane curves are in principle, easy to obtain". Explain the statement and illustrate with an example.
22. Let C be a connected oriented plane curve and let $13: \mathrm{I} \rightarrow \mathrm{C}$ be a unit speed global parametrization of C . Prove that β is either one-to-one or periodic.
23. Find the Gaussian curvature of the Cone

$$
x_{1}^{2}+\frac{\mathrm{Z}}{\mathrm{Z}}-x_{\mathrm{j}}^{-}=0, \mathrm{x} 3>0 \cdot
$$

24. State and prove the inverse function theorem for n -surfaces.

Part C

Answer any two questions.
Each question carries 4 weightage.
25. Let \mathbf{U} be an open set in \mathbb{R} and let $f: \mathbf{U} \rightarrow \mathrm{R}$ be smooth. Let $p E U$ be a regular point of f and let $\mathrm{C}=f(p)$. Then prove the set of all vectors tangent to $f^{-}(\mathrm{C})$ at p is equal to $[\mathrm{V} \mathrm{f}(p)]^{\prime}$ (Both set inclusion to be proved).
26. Let S be a compact, connected oriented n-surface in \mathbb{R}. Prove that the Gauss map maps S onto the unit sphere S^{m}.
27. Let C be a connected, oriented plane curve. Prove : there exists a global parametrization of C .
28. "Locally n-surfaces and parametrized n-surfaces are the same". State the theorems which lead to the apove assertion and outline their proofs.

