C 61262

(Pages:3)

Name	•••••		•••••
------	-------	--	-------

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2014

(CUCSS)

Mathematics

MT 4C 16—DIFFERENTIAL GEOMETRY

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer **all** questions. Each question carries 1 weightage.

- 1. Show that the graph of any function $f:\mathbb{R}^n \to IR$ is a level set for some function $F = \dots = \mathbb{R}$
- 2. Sketch the vector field X (X (p) (**P**, **X** (p))) where X (p) = -p.
- 3. Sketch the level set $f^{-1}(0)$ and typical values of the vector field ∇f for $p = f^{-1}(0)$ when $f = x_2 = x_1^2 -1$.
- 4. Let S be an (n 1) surface in Rⁿ given by S = f⁻¹ (C) where f: U → R (U open in R is such that V f (p) = 0 for all p ∈ S). Define the cylinder over S in R and show that it is an n-surface in R .
- 5. Describe the spherical image of one sheet of 2-sheeted hyperboloid x? $-x^2 x^3 = 4$, $x_1 > 0$, oriented

by N =
$$\nabla f_{\parallel} \nabla f_{\parallel}$$
 where **f** (**x**_i, **x**₂, **x**₃) = $^{2} - \mathbf{x}_{2}^{2} - \mathbf{x}_{3}^{-}$

- 6. Prove that geodesics have constant speed.
- 7. Let X and Y be smooth vector fields along the parametrized curve $a: I \to \mathbb{R}^{+1}$. Verify that $[X \cdot Y] = Y + X$.
- 8. Define the Weingarten map $\mathbb{L}_{\!_{\!\!P}}:S_p\twoheadrightarrow S_p$ (with standard notation).
- 9. Compute $\nabla_{\mathbf{i}}$ X where $v \in III p$, $p \in \mathbb{R}^2$ and X is given by X $(x_1, x_2) = (x_1, x_2, x_1, x_2, x_2), v = (1, 0, 0, 1).$
- 10. Let C be an oriented plane curve and let $p \in C$. Define : a parametrization of a segment of C containing *p*.

Turn over

- 11. Find the length of the parametrized curve $\mathbf{a} \mathbf{I} \rightarrow \mathbf{R}^3$ where $\mathbf{I} = [-1, 1]$ and $\mathbf{a} (t) = ((\cos 3t, \sin 3t, 4t), t)$
- 12. Let S be an oriented n-surface in \mathbb{R}^{n} and let $p \in S$. Define the first and second fundamental forms of S at p.
- 13. Show that a parametrized 1-surface is simply a regular parametrised curve.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries 2 weightage.

- 15. Find the integral curve through p = (a, b) q the vector field X given in question 2.
- 16. Let a, b, c E IR be such that $ac b^2 > 0$. Determine the maximum and minimum values of the function $\frac{1}{2}(x_1, x_2) = xi + x_2^2$ on the ellipse a $x_1^2 + 2b x_i x_2 + c x^2 = 1$.
- Let S c Rⁿ⁺¹ be an oriented n-surface. Prove that there exists on S exactly two smooth normal vector fields.
- 18. Choosing an orientation, describe the spherical image of the cylinder $\sum_{i=2}^{n+1} \frac{1}{i} = 1$.
- 19. Show that a parametrized curve a in the unit sphere $\sum_{i=1}^{n+1} x_i^2 = 1$ is a geodesic iff (if and only if) it is of the form

$$\mathbf{a}(t) = (\cos at) e_{\mathbf{l}} + (\sin at) e_2$$

for some orthogonal pair of unit vectors $\{e_1, e_2\}$ in \mathbb{R}^{n-1} and some a $\mathbb{E} \mathbb{R}$

20. Let S be the n-sphere $\sum_{i=1}^{n+1} e^{-r^2}$ oriented by the inward unit normal vector field. Prove that the

Weingarten map of S is multiplication by $-(r \ge 0)$

21. "Local parametrization of plane curves are in principle, easy to obtain". Explain the statement and illustrate with an example.

- 22. Let C be a connected oriented plane curve and let 13: $I \rightarrow C$ be a unit speed global parametrization of C. Prove that β is either one-to-one or periodic.
- 23. Find the Gaussian curvature of the Cone

$$x_1^2 + x_2 - x_3 = 0, x_3 > 0$$
.

24. State and prove the inverse function theorem for n-surfaces.

(7 x 2 = 14 weightage)

Part C

Answer any **two** questions. Each question carries 4 weightage.

- 25. Let U be an open set in \mathbb{R}^{-} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f and let C = f(p). Then prove the set of all vectors tangent to $f^{-}(C)$ at p is equal to $[V f(p)]^{-}$ (Both set inclusion to be proved).
- 26. Let S be a compact, connected oriented n-surface in ℝ Prove that the Gauss map maps S onto the unit sphere Sⁿ.
- 27. Let C be a connected, oriented plane curve. Prove : there exists a global parametrization of C.
- 28. "Locally n-surfaces and parametrized n-surfaces are the same". State the theorems which lead to the **above** assertion and outline their proofs.

 $(2 \times 4 = 8 \text{ weightage})$