C 3545	(Pages : 4)	Name

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 4C 16—DIFFERENTIAL GEOMETRY

Time : Three Hours Maximum : 36 Weightage

Standard notation as in the prescribed text is followed.

Part A

Answer all questions. Each question carries weightage 1.

1. Sketch the level sets $f^{-1}(c)$ at the heights indicated

$$f x_2, x_3) = {}^2 - \overline{x_2} - \overline{x_3} | c = -1, 0.$$

- 2. Find and sketch the gradient field of the function $I(xi, x_2) = \left(x_1^2 x_2^2\right) / 4$
- 3. Show by example that the set of vectors tangent at a point p of a level set might be all of \mathbb{K}_p^{n+1}
- 4. Show that the set S of all unit vectors at all points of R2 forms a 3-surface in \mathbb{R}^4
- 5. Show that if S is a connected n-surface in \mathbb{R}^{n+1} and $g:S-3\mathbb{R}$ is continuous and takes on on finitely many values, then g is constant.
- 6. Describe the spherical image of the paraboloid $-x_1 + x^2 + x_3^2 = 0$ (Choose your orientation).
- 7. Show that if $\alpha : I$ $\mathbb{R}^n + 1$ is a parametrized curve with constant speed, then a $(t) \perp 1$ a (t) for all t
- 8. Let S be an n-surface in \mathbb{R}^{-+1} , let a: I \rightarrow S be a parametrized curve. Let X be a vector tangent to S along a'. Verify that

$$(fX)' = f \mathbf{X} + f \mathbf{X'}$$

for all smooth functions f along a.

2 C 3545

9. Compute V f where $I: \mathbb{R}^2 \to \mathbb{R}$ and v e \mathbb{R}^2 $p \in \mathbb{R}$.

$$f x_2 = x_1 - x_2, v = (1, 1, \cos 0, \sin 0).$$

- 10. Let C be an oriented plane curve and $p \in C$ with $k(p) \neq 0$. Define the circle of curvature at p.
- 11. Find the length of the given parametrized curve $d:[0,2\pi] \to \mathbb{R}^3$, where $a(t) = (\cos 2t, \sin 2t, \sin 2t)$.
- 12. Let S be an oriented 2-surface in R3 and let pES. Show that for each v, w E S_p

$$L_{\mu}(9) \times L_{\mu}(co) = k(p) \times m$$

- 1.3. Let $Q: U_1 \cup U_2$ and $\psi: U_2 \to \mathbb{R}$ be smooth. Verify the chain rule $d(\psi \circ \phi) = d \psi \circ d \psi$.
- 4. Show that if $S = f^{-1}(c)$ is an n-surface in $R^n \stackrel{\checkmark}{=}$ and $p \to S$, then the tangent space; to S at p is equal to the **kernal** of df_p .

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question carries weightage 2.

Find the integral curve through p(0, 1) of the vector field X on \mathbb{R}^2 given by X(p) = (p X(p)) where $X(x_i, x_i) = (-2x_1, x_2)$.

now that the maximum and minimum values of the function $g(x_1, \dots, x_{n+1}) = \sum_{j=1}^{n+1} a_j x_j$ a.. $x_j x_j$

the unit n-sphere $\sum_{i=1}^{n+1} x_i^2 = 1$ where (a_{ij}) is a symmetric n x n matrix of real numbers, are the nvalues of the matrix (a_i) .

17. Let S be an n-surface in \mathbb{R}^{n+1} , let X be a smooth tangent vector field on S and let $p \in S$. Then prove the existence of the maximal integral curve of X through p.

3

- 18. Show that if the spherical image of a connected n-surface is a single point, then S is contained in an n-plane.
- 19. For $0 \in \mathbb{R}$, let $\alpha_{ij} : [0, it]$ \mathbb{S}^2 be the parametrized curve in the unit sphere \mathbb{S}^2 from the north pole p = (0, 0, 1) to the south pole q = (0, 0, -1), defined by $\alpha_{ij}(t) = (\cos 0 \sin t, \sin 0, \sin t, \cos t)$. Let $\mathbf{v} = (p, 1, 0, 0) \in \mathbb{S}_p$. Then compute $\mathbb{P}_{\mathbf{u}_{ij}}(\mathbf{v})$.
- 20. Let S be an n-surface in p + 1 , oriented by the unit normal vector field N. Let p E S and $v E S_p$ Let a:I S be a parametrized curve with a $(O = v \text{ for some } t_o E \text{ I. Then prove that}$ $(t \text{ N} \text{ N}(p) = \mathbb{L}_p(v) \cdot v.$
- 21. Let $g: I \to III$ be a smooth function and let C denote the graph of g. Show that the curvature of C at the point (t, g(t)) is g''(t) 1(1+g') for an appropriate choice of orientation.
- 22. Find the Gaussian curvature of the ellipsoid ${}^{x}\mathbf{Y}$ \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{y} = 1
- 23. Show that the Weingarten map at each point of a parametrized n-surface in \mathbb{R}^{n+1} is self-adjoint.
- 24. State and prove inverse function theorem for n-surfaces.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries weightage 4.

25. Let S be a compact, connected oriented n-surface in \mathbb{R}^{n+1} . Prove that the Gauss map maps S o the unit n-sphere \mathbb{S}^n .

Turn (

4 C 3545

- 26. Let C be a connected, oriented plane curve and let 0: I C be a unit speed global parametrization C. Then prove that β is either one-to-one or periodic. Further show that 0 is periodic iff C is compact.
- 27. Let S be a compact oriented n-surface in \mathbb{R}^+ . Prove: There exists a point $p \to S$ such that the second fundamental form at p is definite.
- 28. Let S be an n-surface in \mathbb{R}^{n+1} and let $f \to \mathbb{R}^n$. Suppose that $f \circ g$ is smooth for each level parametrization, $\phi: U \to S$. Then prove that f is smooth.

 $(2 \times 4 = 8 \text{ weightage})$

1413 13 po po ca

, pe b/s

protie

while it doc! ande the clock fivelit it?

her Hou o

мулям Хіфія