FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics
MT 4C 16—DIFFERENTIAL GEOMETRY

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

1. Show that the graph of any function $f \longrightarrow I R$ is a level set for some function $F: \mathbb{R}{ }^{*} \rightarrow \mathbb{R} \cdot$
2. Find and sketch the gradient field of the function $f\left(x_{\boldsymbol{i}}, x_{2}\right)=x_{1}-x_{2}$.
3. Let $f: \mathbf{U} \rightarrow \mathbb{R}$ be a smooth function and let $\alpha: 1 \rightarrow \mathrm{u}$ be an integral curve of ∇f. Show that :

$$
\left(\frac{d}{d t}\right)(f \quad d)(t)=I I \nabla f(\alpha(t)) 11^{2} \text { for all } \mathbf{t E I}
$$

4. Sketch the cylinder over the graph of $f(x)=\cos x$
5. Show that the two orientations on the unit n -sphere $x_{1}^{2}+\ldots+4_{+l}=1$ are given by :

$$
\mathrm{N}_{\mathrm{L}}(p)=(p, p) \text { and } \mathrm{N} 2(p)=(-p, p) .
$$

6. Prove that geodesics have constant speed.
7. Let S be an n-surface in \mathbb{R}^{n+1}, let a $: I \rightarrow S$ be a parametrized curve and let X and Y be vector fields tangent to S along a. Verify that $(\mathbf{X}+\mathbf{Y})=\mathbf{X}+$
8. Compute V (1) where $f: \mathbb{R}^{+1} \quad \mathbb{R}_{n} \boldsymbol{P} \mathbf{E}^{\mathrm{n}+1}, \mathbf{v} \in \mathbb{R}_{r} \quad$ where $f\left(x_{1}, x_{4}, x_{a}\right)=x_{1}, x_{a}, x_{3}^{2}$ and $\mathbf{v}=(1,1,1, \mathbf{a}, b, c)(n=2)$.
9. Find a global parametrization of the plane curve $\mathrm{x}_{1}^{2}+\frac{x_{2}}{4}=1$. (You may choose the orientation).
10. Find the length of the parametrized curve a: $[0,2 \mathrm{~m}] \rightarrow \mathrm{R}^{4}$ given by $\alpha(t)=\left(\cos t_{1} \sin t, \cos t, \sin t\right)$.
11. Let $S \mathbb{R}^{n}$ be an oriented n-surface, let $p \mathbf{E S}$. Define the second fundamental form of S at p.
12. Let U be an open set in \mathbb{R}, let $\varphi: U \rightarrow \mathbb{R}^{川 n}$ be a smooth map, let $d \varphi$ be the differential of 9 . Prove that the restriction $d \varphi_{\mu}$ of $d \varphi$ to \mathbb{R}_{P}^{n} is a linear map $d \varphi_{P}: \mathbb{R}_{P}^{n} \quad \mathbb{R}_{\varphi(P)}^{m}$
13. Let $\mathrm{Q}: \mathrm{U}_{1} \mathrm{U}_{2}$ and $\psi: \mathrm{U}_{2}-3 \mathrm{I}$ be smooth where $\mathrm{U}_{1} \subset \mathbb{R}^{\prime}$ and $\mathrm{U}_{2} \sqsubset \mathbb{R}^{m}$. Verify the chain rule $d(\psi+\varphi)=d \psi * d \varphi$.
14. Let S be an n -surface in $\mathbb{R}^{\prime \prime}(k .1)$. Let $p \mathrm{E} S$. Define the tangent space S_{p} at p.
($14 \times 1=14$ weightage)

Part B

Answer any seven questions. Each question carries 2 weightage
15. Find the integral curve through $p=(a, b)$ of the vector field X on \mathbb{R}^{\wedge} given by $\mathrm{X}(p)=(p, \mathrm{X}(p))$, where $X\left(x_{i}, x_{2}\right)=\left(x_{2}, x_{i}\right)$.
16. Sketch the tangent space at a typical point of the level set $f^{-}(1)$ where $f\left(x_{1}, x_{a}, x_{3}\right)=x_{1}^{2}+\mathrm{x} 2+x_{3}^{2}$.
17. Show that the set S of all unit vectors at all points of $1 R^{2}$ forms a 3-surface in R^{4}.
18. Show that the spherical image of an n-surface with orientation N is the reflection through the origin of the spherical image of the same n-surface with orientation $-N$.
19. Prove that, in an n-phase, parallel transport is path independent.
20. Let S be the unit n -sphere $\sum_{i=1}^{\mathrm{n}+1} \mathrm{x} 2=1$ oriented by the outward unit normal vector field. Prove that the Weingarten map of S is multiplication by -1 .
21. Let $\alpha(t)=(x(t), y(t))(t \mathrm{E} \mathbf{I})$ be a local parametrization of the plane curve C. Show that :

$$
r=\boldsymbol{\alpha}=\left(x^{\prime} y^{\prime \prime}-y^{\prime} x\right) /\left(x^{\prime 2} / y^{213 / 2} .\right.
$$

22. Let S be the ellipsoid $\left(x_{1}^{2} / \mathrm{a}^{2}+/^{2}\right)+\quad c 2=1$. Find the Gaussian curvature of $\mathrm{S} .(a b c \neq 0)$.
23. Show that the Weingarten map at each point of a parametrized n-surface is self-adjoint.
24. State and prove the Inverse Function Theorem for n -surfaces.
($7 \times 2=14$ weightage)

Part C

Answer any two questions.
Each question carries 4 weightage.
25. Let U be an open set in \mathbb{R}^{+1} and let $f: \mathrm{U} \rightarrow \mathrm{IR}$ be smooth. Let $\mathrm{p} E \mathrm{U}$ be a regular point of f and let $\mathrm{c}=f(p)$. Then prove : the set of all vectors tangent to $\boldsymbol{f}(\boldsymbol{c})$ at p is equal to $[\mathrm{v} f(p)]$.
26. Let S be an n-surface in \mathbb{R}^{+1}, let $p \mathrm{ES}$ and let $v E S_{\mathrm{p}}$. Then prove there exists an open interval I containing 0 and a geodesic a:I S such that :
(i) a (0) $=p$ and $\alpha(0)=$
(ii) If [3: I -p S is any other geodesic in S with $\beta(0)=p$ and $\beta(0)=\mathrm{v}$, then I c I and $\beta(t)=\mathrm{a}(t)$ for all $t \mathrm{E}$.
27. Let ii be the 1 -form on $\mathrm{R}^{2}-\{0\}$ defined by :

$$
{ }_{n}=\frac{x_{2}}{x_{1}+X^{2}}{ }_{x+\frac{n_{1}^{2}}{2}}^{d x_{2}}
$$

Then prove that for $\mathrm{a}:[\mathrm{a}, \mathrm{b}] \rightarrow R^{2}-\{0\}$, any piecewise smooth closed parametrized curve in $R^{2}-\{0\}_{2}^{\mathrm{J} h l}=2^{-2}$ for some integer K .
28. Let $\quad \rightarrow \mathbb{R}^{+1}$ be a parametrized n-surface in $\mathbb{R}^{n}+{ }^{1}$ and let $p \in U$. Then show that there exists an open set $\mathrm{U}_{1} \mathrm{c} \mathbf{U}$ about p such that $\varphi(\mathrm{U} 1)$ is an n -surface in \mathbb{R}^{n+1}.
($2 \times 4=8$ weightage)

