C 82512

(Pages : 3)

Name

Reg. No.

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics

MT 4C 16—DIFFERENTIAL GEOMETRY

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Show that the graph of any function $f \longrightarrow \mathbb{R}$ is a level set for some function $F : \mathbb{R}^{*} \to \mathbb{R}^{*}$.
- 2. Find and sketch the gradient field of the function $f(x_i, x_2) = x_1 x_2$.
- 3. Let $f: U \to \mathbb{R}$ be a smooth function and let $a: 1 \to U$ be an integral curve of ∇f . Show that :

$$\left(\frac{d}{dt}\right)(f \ d)(t) = \mathbb{I} \nabla f(\alpha(t)) \mathbb{I}^2$$
 for all $t \in I$.

- 4. Sketch the cylinder over the graph of $f(x) = \cos x$
- 5. Show that the two orientations on the unit n-sphere $x_1^2 + \ldots + 4_{+l} = 1$ are given by :

 $\mathbb{N}_{\mu}(p) = (p, p) \text{ and } \mathbb{N}_{2}(p) = (-p, p).$

- 6. Prove that geodesics have constant speed.
- Let S be an n-surface in Rⁿ⁺¹, let a : I → S be a parametrized curve and let X and Y be vector fields tangent to S along a. Verify that (X + Y) = X +
- 8. Compute V (1) where $f: \mathbb{R}^{n+1} = \mathbb{R}$, $p \in [n+1]$, $v \in \mathbb{R}_{p}$ where $f(x_1, x_2, x_3) = x_1, x_2, x_3^2$ and v = (1, 1, 1, a, b, c) (n = 2).
- 9. Find a global parametrization of the plane curve $x_1^2 + \frac{x_2}{4} = 1$. (You may choose the orientation).

Turn over

- 10. Find the length of the parametrized curve $a : [0,2m] \rightarrow \mathbb{R}^4$ given by $\alpha(t) = (\cos t, \sin t, \cos t, \sin t)$.
- 11. Let S **E**^{*n*} be an oriented n-surface, let *p* **E S**. Define the second fundamental form of S at *p*.
- 12. Let U be an open set in \mathbb{R} , $|et \varphi : \mathbb{U} \to \mathbb{R}^m$ be a smooth map, let $d\varphi$ be the differential of 9. Prove that the restriction $d\varphi_p$ of $d\varphi$ to \mathbb{R}^n_p is a linear map $d\varphi_p : \mathbb{R}^n_p = \mathbb{R}^m_{\varphi \in [p]}$
- 13. Let $Q: U_1 \cup U_2$ and $\psi: U_2 31$ be smooth where $U_1 \subset \mathbb{R}^d$ and $U_2 \subset \mathbb{R}^m$. Verify the chain rule $d(\psi \circ \phi) = d\psi \circ d\phi$.
- 14. Let S be an n-surface in \mathbb{R}^n (*k*. 1). Let *p* E S. Define the tangent space S_p at *p*.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries 2 weightage.

- 15. Find the integral curve through p = (a, b) of the vector field X on \mathbb{R}° given by X(p) = (p, X(p)), where X $(x_i, x_2) = (x_2, x_i)$.
- 16. Sketch the tangent space at a typical point of the level set $\int (1)$ where $f(x_1, x_2, x_3) = x_1^2 + x_2 + x_3^2$.
- 17. Show that the set S of all unit vectors at all points of $1R^2$ forms a 3-surface in R^4 .
- 18. Show that the spherical image of an n-surface with orientation N is the reflection through the origin of the spherical image of the same n-surface with orientation N.
- 19. Prove that, in an n-phase, parallel transport is path independent.

20. Let S be the unit n-sphere $\sum_{i=1}^{n+1} x^2 = 1$ oriented by the outward unit normal vector field. Prove that

the Weingarten map of S is multiplication by -1.

21. Let $\alpha(t) = (x(t), y(t))(t \in \mathbf{I})$ be a local parametrization of the plane curve C. Show that :

$$r = \alpha = (x'y' - y'x)/(x'^2/y'^{2})^{3/2}$$

22. Let S be the ellipsoid $(x_1^2/a^2 + l_b^2) + c^2 = 1$. Find the Gaussian curvature of S. (*abc* = 0). 23. Show that the Weingarten map at each point of a parametrized n-surface is self-adjoint.

24. State and prove the Inverse Function Theorem for n-surfaces.

(7 x 2 = 14 weightage)

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. Let U be an open set in \mathbb{R}^{+1} and let $f: U \rightarrow IR$ be smooth. Let p E U be a regular point of f and let c = f(p). Then prove : the set of all vectors tangent to f(c) at p is equal to [v f(p)].
- 26. Let S be an n-surface in \mathbb{R}^{+1} , let $p \in S$ and let $U \in S_p$. Then prove there exists an open interval I containing 0 and a geodesic a: I S such that :
 - (i) a(0) = p and a(0) =
 - (ii) If [3: I -p S is any other geodesic in S with $\beta(0) = p$ and $\dot{\beta}(0) = v$, then I c I and $\beta(t) = a(t)$ for all $t \in A$.
- 27. Let ii be the 1-form on $\mathbb{R}^2 \{0\}$ defined by :

Then prove that for a : [a,b] $\rightarrow R^2 - \{0\}$, any piecewise smooth closed parametrized curve in

 $R^2 - \{0\} J_{hl} = 2^{-1}$ for some integer K.

28. Let $\rightarrow \mathbb{R}^{+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p \in U$. Then show that there exists an open set U₁ c U about p such that \P (U1) is an n-surface in \mathbb{R}^{n+1} .

 $(2 \times 4 = 8 \text{ weightage})$