	125	Ω
C	425	UZ

(Pages **1** 3)

Name		•
------	--	---

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2013

(CUCSS)

Mathematics

MT 4C 16—DIFFERENTIAL GEOMETRY

Time: Three Hours

Maximum 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightings.

1. For the given function f, sketch level sets $f^{-1}(c)$ at the heights indicated.

$$f x_2) = - c = -1,0,1.$$

- 2. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1^2 + x_2^2 + x_3^2 + x_4^2 +$
- 3. Show by example that the set of vectors tangent at a point p of a level set might be all of $\mathbb{R}p^+$.
- 4. Sketch the surface of revolution obtained by rotating c about the x_1 axis where c is the curve $-\frac{2}{2} = 1, x_2 > 0$.
- 5. Show that the plane R is connected.
- 6. Describe the spherical image of the cone.

$$-\frac{2}{x_0} + \frac{2}{x_0} = x_0^2 = 0, x_1 > 0.$$

(the surface is oriented by

where *f* is the function = $x^2 + x^2 + x^3$.

- 7. Define a geodesic on an n-surface S = 1 If S contains a straight line segment, prove that segment is a geodesic.
- 8. Let S be an n-surface in \mathbb{R}^{n+1} , let $a: I \to S$ be a parametrised curve is S; X, Y smooth vector fields tangent to S along a. Then prove that $(X = X' \cdot Y + X \cdot Y')$

Turn over

2 C 42502

- 9. Compute the derivative $\nabla_{\mathbf{w}}(\mathbf{X})$ where $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{p} \in \mathbb{R}^2$ given by $\mathbf{X}(\mathbf{x}_1, \mathbf{x}_2 = \mathbf{X}_1, \mathbf{x}_2 = \mathbf{X}_2, \mathbf{X}_1)$, $v = (\cos 0, \sin 0 \sin 0, \cos 0)$.
- 10. Find global parametrisation of x_2 = 0. (You may choose the orientation).
- 11. Find the length of the parametrised curve a: $I \rightarrow \mathbb{R}^4$ where a $(t) = (\cos t, \sin t, \cos t, \sin t)$, $I = [0, 2\pi]$.
- 12. Let S be an oriented n surface in \mathbb{R}^{n+1} Define the first and second fundamental forms of S at $p \to S$.
- 13. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let $p \in S$. Give a formula for computing K(p), the Gauss-Kronecker curvature.
- 14. Let U be an open set in \mathbb{R}^n and let $Q: U \to \mathbb{R}$ be a smooth map. Define : dQ, the differential of Q.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions.

Each question carries 2 weightage.

- 15. Let X be the vector field on \mathbb{R}^2 , $\mathbb{X}(p) = (p, \mathbb{X}(p))$ where $\mathbb{X}(x_1, x_2) = \left(-2x_2, \frac{1}{2}\right)$ Find the integral curve of X through p = (1, 1).
- 16. Show that the maximum and minimum values of the function $g(\mathbf{x_i}) = \begin{bmatrix} n+1 \\ i=1 \end{bmatrix} \mathbf{x_i} \mathbf{x_j} \mathbf{x_i} \mathbf{x_j}$ on the unit n-sphere $\sum_{i=1}^{n+1} x_i^2 = 1$, where (ad) is a symmetric n real matrix, are eigenvalues of the matrix (a_y).
- 17. Show that the two orientations on the n-sphere $\sum_{i=1}^{n+1} x_i^2 = r^2$ of radius r > 0 are given by $N_1(p) = (p, p \ 1 \ r)$ and $N_2(p) = (p, -p \ I \ r)$.
- 18. Describe the spherical image of the parabola $-x_1 + x_2 = 0$ (orientation left to your choice).

- 19. Let S denote the cylinder $x_1 + x^2 = 1$ in \mathbb{R}^n Show that a is a geodesic of S iff a is of the form $a(t) = (\cos(at + b), \sin(at + b), [Ct + Cd))$, for some $a, b, c, d \in \mathbb{R}$.
 - 20. Let $a : [0, \pi] \le^2$ be the half great circle in s^2 running from p = (0, 0, 1) to q = (0, 0, -1) defined by $a(t) = (\sin t, 0, \cos t)$. Let $v = (p, 1, 0, 0) \in \mathbb{S}$ p show that $P_a(v) = (q, -0, 0)$.
 - Choosing your own orientation, compute the Weingarten map for the circular cylinder $\hat{x}_0^2 + \hat{x}_0^2 = 1 \text{ in R}^3$

 - 23. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} . Then, prove that the Gauss **Kronecker** curvature of S at p is non zero for all $p \in S$ if and only if second fundamental form \mathbb{R}_p of S at p is definite for all $p \in S$.
 - 24. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let

$$\pi(S) = \{ v \in \mathbb{R}_{p}^{n+1} \subseteq \mathbb{R}^{2n+2} : p \in S \text{ and } v \cdot N \text{ (p)} \}$$
 Prove that T (S) is a 2n—surface in \mathbb{R}^{-n+2} .

(7 x 2 = 14 weightage)

Part C

Answer any two questions.

Each question carries 4 weightoge.

- 25. Let U be an open set in \mathbb{R}^n+1 and let f=U-3111 be smooth. Let $p \to U$ be a regular point off and let c=f(p). Then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to [V f(p)] (Both set inclusion to be proved)
- 26. Let S be an n-surface in \mathbb{R}^{+1} , let $p \in S$ and let $v \in S$. Then prove the existence and 'uniqueness' of the maximal geodesic in S passing through p with initial velocity v.
- 27. Prove that the Weingarten map Lp is self-adjoint.
- 28. Let S be a compact oriented n-surface in $\mathbb{R}^{n}+1$ Prove there exists a point p on S such that the second fundamental form at p is definite.

 $(2 \times 4 = 8 \text{ weightage})$