Name

Reg. No....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2014

(CUCSS)

Mathematics

MT 4E 05—OPERATIONS RESEARCH

Time: Three Hours Maximum: 36 Weightage

Part A

Answer **all** questions.

Each question has well 1.

- 1. Give an example to show that spanning tree of a graph need not be unique.
- 2. Write the problem of maximum flow in the generalized form.
- 3. Tasks A, B, C, ... H, I constitute a project. The notation $X \le Y$ means that the task X must be finished before Y can begin. With this notation,

$$A \le D, A \le E, B \le F, D \le F, C \le G, C \le H, F \le I, G \le I,$$

draw a graph to represent the sequence of tasks.

4. Describe the effect of introducing the constraint $3x_1 - 2x_2 = 2$ in the L.P. problem

Minimize
$$Z = 4x + 5x_2$$

subject to
$$2x_1 + x_2$$

$$x_1 + 2x = 5_5$$

$$x_1 + x_2 \ge 1$$

$$x_1 + 4x_2 = 2$$

$$x_i, X2$$
 0.

Whose optimal solutio 1 is $x_1 = 2/3$, $x_2 = 1/3$.

- 5. What do you mean by parametric programming ?
- 6. Let f(X) be a real-valued function in $\mathbb{E}_{\mathbb{R}^3}$ G (X) a vector function consisting of real-valued functions g:(X), i=1, 2, ..., m as components and

$$F(X, Y) = f(X) + Y'G(X)$$

where Y is a vector in E_m . If F (X, Y) has a saddle point (X₀, Y₀) for every Y 0, prove that X_u is a minimum of f(X) subject to the constraints G (X) 5_0.

Turn over

7. Write the Kuhn-Tucker conditions for the problem:

Minimize
$$\mathbf{f} = x_1^2 + x_2^2$$

subject to
$$x_1 + x_2$$

$$2x_1 + x_2 = 5$$

- 8. What is the advantage of solving the dual problem in a geometric programming problem.
- 9. What is the difference between a posynomial and a polynomial.
- 10. Describe a method of dynamic programming to solve the problem

Maximize
$$j = 1$$
 f_j (u_j

subject to
$$\sum_{j=1}^{n} a_{j} u_{j} = k \quad u_{j} > 0, \ a_{j} > 0$$

- 11. Define the term forward recursion as used in dynamic programming.
- 12. Solve by the method of dynamic programming

Maximize
$$\phi_{1} = f_2 f_1$$
 where $f_1 = u1$, $f_2 = u_2$

subject to
1
 1
 1
 1
 2
 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2

- 13. Show that the function $f(x) = x^2$, O $x \le 1$ is unimodal in (0, 2).
- 14. Find the minimal point of $x^3 3x + 2$, 0 5 x 3 by **Newton-Raphson** method.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question has **weightage** 2.

- 15. Define the following terms:
 - (a) Tree ; (b) Spanning Tree.

16. Find the maximum flow in the following graph with the constraints

$$25_{x_1}$$
 10, 45_{x_2} 12, -25_{x_3} 5, -4 , 05_{x_4} 5, 05_{x_5} 5, -10

17. Describe the effect of introducing new variables on the optimal solution of an L.P. problem.

3

18. Solve graphically:

Maximize
$$(x_1 - 4)^2 + (x_2 - 4)^2$$

subject to
$$x_1 + x_2 = 5$$
___ 6
 $x_1 - x_2 = 1$
 $2x_1 + x_2 = 6$
 $x_1 - x_2 = -4$
 $0, x_2 = 0$

- 19. State Kuhn-Tucker theorem.
- 20. Write the orthogonality conditions in a general geometric programming problem.
- 21. What are the essential features of dynamic programming problem.
- 22. Minimize: $u_1^2 + u_2^2 + u_3^3$

subject to
$$u_1 + u_2 + 10$$

 u_1 , u_2 u_3 a' 0.

- 23. Briefly describe the Fibonacci search plan.
- 24. Find the minimal point of $x^3 3x + 2$, $O \le x \le 3$ by quadratic interpolation.

 $(7 \times 2 = 14 \text{ weightage})$

Turn over

C 61267

Part C

4

Answer any two questions. Each question has weightage 4.

25. A project consists of activities A, B, C, . . , M. In the following data, X - Y = C means Y can start after C days of work on X. A, B, C can start simultaneously. K and M are the last activities and take 14 and 13 days repectively.

$$A - D = 4$$
, $B - F = 6$, $B - E = 3$, $C - E = 4$, $D - H = 5$, $D - F = 3$, $E - F = 10$, $F - G = 4$, $G - I = 12$, $H - I = 3$, $H - J = 3$, $J - K = 8$, $I - K = 7$, $L - M = 9$.

Find the least time of completion of the project.

- 26. A factory can manufacture two products A and B. The profit on a unit of A is Rs. 80 and of B is Rs. 40. The maximum demand of A is 6 units per week, and of B it is 8 units. The manufacturer has set up a goal of achieving a profit of Rs. 640 per week. Formulate the **problem** as goal programming, and **sovle** it.
- 27. Solve by the method of quadratic programming:

Minimize
$$-6x_1 + 2x_1^2 - 2x_1 x_2 + 2x_2^2$$

subject to $x_1 + x_2 \le 2$,
 $0, X2 O$.

28. Find the maximum of $f(x) = -0.55 + 3x - x^2$ by Rosenbrock algorithm starting from x = 0, h = 1. (2 x 4 = 8 weightage)