C 3550 (Pages : 3) Name

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 4E 05—OPERATIONS RESEARCH

Time: Three Hours Maximum: 36 Weightage

Part A

Answer **all** questions.

Each question has weighted 1.

- 1. Briefly describe the minimum path problem.
- 2. For any feasible flow $\{x_n\}$, l=1,2,... m in the graph, prove that the flow x_0 in the return are is not greater than the capacity of any cut in the graph.
- 3. State the problem of maximum potential difference in a network.
- 4. Describe the effect of deletion of Variables on the optimal solution of an LP problem.
- 5. What is goal programming.
- 6. Let f(x) be a real-valued function in E_n , G(X) a vector function consisting of real valued functions $E_n(x)$, i = 1, 2, ... m as components and F(X, Y) = f(x) + Y'G(X) where Y is a vector in E_m . If F(X, Y) has a saddle point (X_0, Y_0) for every Y 0, prove that X_0 is a minimum of f(x) subject to the constraints G(X) 0.
- 7. Write Kuhn-Tucker conditions for the problem:

Minimize
$$16 (x_1 - 2)^2 + (4x_2 - 9)^2$$

subject to $x_1 - x_2^2 \ge 0$
 $x_1 + x_2 \cdot 5_1 \cdot 6$,
 $x_1, x_2 \ge 0$.

- 8. What is the advantage of solving the dual problem in geometric programming problems.
- 9. Write the general form of a geometric programming problem.
- 10. Define the decision variables and the state variables in a dynamic programming problem.
- **11.** Explain the difference between forward recursion and backward **recursion** in **dynam** programming.

Turn ov

- 12. Show that the function $f(x) = x^2$, $0 \le x$ 1 is unimodal in (0, 2).
- 13. What is meant by a sequential search plan.
- 14. Find the minimal point of $x^3 3x + 2$, $0 \le x \le 3$, taking' E = 0.01 by the method of false position.

2

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question has weightage 2.

- 15. Briefly describe an algorithm to find the spanning tree of minimum length if the length of each arc of the graph is given as a non-negative number.
- 16. A project consists of activities A, B, C, —M. In the following data X Y = C means Y can start after C days of Work on X. A, B, C can start simultaneously. K and M are the last activities and take 14 and 13 days respectively. A D = 4, B F = 6, B E = 3, $C \cdot E = 4$, D H = 5, D F = 3, E F = 10, F G = 4, G I = 12, H I = 3, H J = 3, J K = 8, I K = 7, I L = 7, L M = 9. Find the least time of completion of the project.
- 17. For the problem:

Maximize
$$f = x_1 - x_2 + 2x_3$$

subject to $-x_2 + x_1 \le 4$,
 $x_1 + x_2 - x_3 \le 3$
 $2x_1 - 2x_1 + 3x_3 = 15$
 $x_1 - x_2 - x_3 \ge 1$

assuming x_4 , x_5 , x_6 respectively as the slack variables for the three constraints, the optimal table is the following :

Basis	Values	x ₁	x ₂	x ₃	X4	Х ₅	x ₆
x_3	21	4		1		2	1
\mathbf{x}_{4}	7	2			1	1	0
\mathbf{x}_{2}^{-}	24	5	1			3	1
- f	18	2	,			1	1

Carry out sensitivity analysis when the coefficient of x_1 in the objective function changes to 2.

.8. Minimise
$$f = x_1^3 + x_2^2$$

subject to $(x, -1)^3 - x_2^2 > 0$.

- 9. Mention briefly an algorithm for solving a quadratic programming problem.
- **).** Explain the terms weight functions and normalised weight functions in geometric programming problems.

21. Describe a method of dynamic programming to solve the problem $z = \int_{a}^{b} \int_{a}^{b} (u_{j})^{2} du_{j}$

subject to
$$a_{j} = 1$$

 $a_{j} = b \in \mathbb{R}, a \ge 0, b > 0$

22. Minimize $+u2 + u_3$ subject to $u_1 + u_2 + u_3$ 10, u_3 , u_2 , u_3 O

by forward recursion.

- 23. Briefly describe the computational algorithm for Fibonacci search plan.
- 24. Find the point of minimum of $f(x) = x^2 + x^2$ in the interval (0, 1) using golden section method.

3

$$(7 \times 2 = 14 \text{ weightage})$$

Part C

Answer any two questions. Each question has weightage 4.

25. Find the maximum non-negative flow in the network described below, arc (V_j, V_k) being denoted as (j, k), V_k is the source and V_k is the sink.

Arc	(a, 1)	(a, 2)	(1, 2)	(1, 3)	(1, 4)	(2, 4)	(3, 2)	(3, 4)	(4, 3)	(3, <i>b</i>)	(4, <i>b</i>)
Capacity	8	10	3	4	2	8	3	4	2	10	9

26. Minimize
$$f(X) = (1 + X) x_1 + (-2 - 2?) x_2 + (1 + 5?) x_3$$
,

subject to
$$2x_{1} - x_{2} + 2x_{3} S 2$$
,

$$x_1 - x_2 \quad 3$$
$$x + 2x_2 - 2x_3 \quad 4$$

$$\mathbf{X} \mathbf{X}_{2}, \mathbf{X}_{3}$$

27. Minimise
$$x_2^2 x_3 - 5x_1$$

subject to 5x, $-3x_1 x_3^2 < 2$

the variables being all positive.

28. Maximize
$$\sum_{n=1}^{4} (4u_n - nu_n)$$

subject to
$$\sum_{m=1}^{4} \mathbf{u}_{m} = 10$$
, $\mathbf{u}_{m} = \mathbf{O}$.

 $(2 \times 4 = 8 \text{ weightage})$