\qquad

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2014 (CLCSS)

Mathematics
MT 4C 15—FUNCTIONAL ANALYSIS—II

Time : Three Hours
Maximum : 36 Wicightage

> Part A
> Answer all the questions.
> Each question carries a weightage of 1.

1. Show that a continuous map on a metric space is a closed map. Is the converse true ? Justify your answer.
2. Define eigen value, and approximate eigen value of a bounded operator A on a Banach space X. Show that every eiper value of A is an approximate cigen value of A.
3. Define Fredholm integral operator on $\mathrm{X}=\mathrm{C}([0,1])$.
4. Show that if A is an invertible bounded linear operator on a Banach space X .over K then $\sigma\left(A^{-1}\right)=1 \mathrm{~K}^{-1} \varepsilon K: K \varepsilon \sigma^{(}(A)$
5. Let X and Y be normed spaces and $\mathrm{F}_{\mathrm{c}} \mathrm{BL}(\mathrm{X}, \mathrm{Y})$. Show that if $\mathrm{y}^{\prime} \mathrm{c} \mathrm{Y}^{\prime}$, then $\left\|\mathrm{F}^{\prime \prime}\left(y^{\prime}\right)\right\| \leq\|\mathrm{F}\| \cdot \|\left(y^{\prime} \|\right.$.
6. Show that every reflexive normed space is a Banach space.
7. Give an example of a continuous map on a normed space which is not compact.
8. Let H be a Hilbert space over K and y c H be fined. Show that $f: H \rightarrow \mathrm{~K}$ defined by $\boldsymbol{f}(\boldsymbol{x})=\langle x, y\rangle$ for x c H is a continuous linear functional and that $|\boldsymbol{f}|=$ OIL
9. Define weak convergence of a sequence $\left(x_{f_{l}}\right)$ in a Hilbert space H. Is it true that if a sequence ($x_{r_{l}}$) in H is convergent in H then $\left(\boldsymbol{x}_{n}\right)$ is weak convergent in H ? Justify your answer.
10. Show the if A is a linear operator on a Hilbert space H which is continuous at 0 , then A is bounded.
11. Sthow the - $\left\{u_{1}, u_{2}, \ldots\right\}$ is an arthonarmal basis for a Hilbert space H, then each AEBL (H) is defined by the matrix $\left(<\mathrm{A}\left(u_{j} \quad u_{i}>\right)\right.$ with respect to this basis.
12. Let H be a Hilbert space and A s BL (H). Determine the relation between A^{*} and A^{\prime}, where A^{*} and A^{\prime} are respectively the adjoint and transpose of A.
13. Give an example of a normal operator which is neither unitary nor sclf-adjoint.
14. Let H be a Hilbert space and A, B c BL (H) with A self-adjoint. Show that AB = 0 iff R (A) 1 R (B). ($14 \times 1=14$ weightaspa)

Part B

Answer any seven questions.
Each question carries a weifhtage of 2.
15. Let $\|$ |' be a complete norm on $C \quad b]$) such that if $\| x_{m} x_{0}^{\prime} \quad 0$, then $x_{m}(t) x(t)$ for every $t c[a, b]$. Show that II $\|$ is equivalent to, the sup norm on $C \quad$.
16. Let X be a non-zero Battrch space over C and $A c B L(X)$. Show that a (A) is non-empty.
17. Let X be a normed space. Show that if X^{\prime} is separable then X is separable.
18. Show that every closed subspace of a reflexive normed space is reflexive.
19. Let X be a Banach space and P c $\mathrm{BL}(\mathrm{X})$ be a projection. Show that P is compact iff P is of finite rank.
20. Let H be a Hilbert space. Show that there is an inner product \leq, \gg on H^{\prime} such that $\leq f, f>=|f|^{2}$ for every f c H^{\prime}.
21. Let H be a Hilbert space and $A \varepsilon B L(H)$. Show that there is a unique B c $B L(H)$ such that for all $x, y \quad \mathrm{H}$,

$$
\left.<\mathrm{A}(x)_{2}\right)>\square<x_{4} \mathrm{~B}(y)>.
$$

22. Let H be a Hilbert space and A a BL (H). Show that 4 is unitary iff $\|A(x)\|=114$ for all x c H and A is sirjective.
23. Let $\mathrm{A} \operatorname{c} \operatorname{BL}(\mathrm{H})$ and for $\mathrm{n}=1$, , let A_{n} be a compact operator on H . Show that if. $\| \boldsymbol{\Lambda}_{\mathrm{r}}-\mathrm{A} 11-* 0$, then A is compact.
24. Let A be a compact self-adjoint operator on a Hilbert space H. Show that A is a positive operator iff every ajpenvalut of A is non-negative.

Part C

Answer any two questions. Each question carries a uevightuge of 4 .
25. State and prove closed graph theorem.
26. Let $1 \leq p, q 500$ and $1 / p$

Show that the dual of k^{n} with the norm
is linearly isometric to k^{n} with the norm $\|_{V}$.
27. Let H be a Hilbert space, G be a subspace of H and g be a continuous linear functional on G . Show that there is a unique continuous linear functional f on H such that $f / \mathrm{i}=g$ and $\mathrm{lin}=\| g \mid$.
28. Let A be a non-zero compact zelf-adjoint operator on a Hilbert space H over K. Show that there exists a finite or infinite sequence (s_{s}) of non-zero real numbers with and an nethonormal set $\left.u_{4}+\cdots\right)$ in H such that

s. $\quad 0$ as $n \rightarrow$

