C 63398	(Pages:3)	Name

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2014

Reg. No.....

(Non-CUCSS)

Mathematics

Paper XVI-FUNCTIONAL ANALYSIS-II

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions. Each question carries 4 marks.

- 1. Let X be a normed space. Show that BL (X) is closed with respect to composition of functions and that the composition is continuous.
- 2. Give an example of a normed space which is reflexive but not strictly convex.
- 3. Let X be an inner product space and E c X be convex. Show that there exists at most *one* best approximation from E to any $x \in X$.
- 4. Let H be a Hilbert space and A s BL (H) be self-adjoint. Show that A^2 O and $A \subseteq A$ I.

 $(4 \times 4 = 16 \text{ marks})$

Part B

Answer any four questions without omitting any unit. Each question carries 16 marks.

UNIT I

I. (a) Let X be a normed space and A c BL (H) be of finite rank. Show that:

$$\sigma_{\alpha}(A) = \sigma_{\alpha}(A) = \sigma(A).$$

- (b) Let X be a Banach space over K and A c BL (X). Show that $\sigma(A)$ is a compact subset of K.
- II. (a) Let X be a normed space. Show that if X' is separable, then so is X. Is the converse True ? Justify your answer.

Turn over

2 C 63398

- (b) Let $1 p = \text{and } \frac{1}{P} = 1$. Show that the dual of K" with the norm is linearly isometric to K" with the norm
- III. (a) Show that every closed subspace of a reflexive normal space is reflexive.
 - (b) Let Y be a closed subspace of a **normed** space X. Show that X is reflexive if Y and **Y** are reflexive.

UNIT II

- IV. (a) Let X be a normed space and Y be a Banach space. Show that CL (X, Y) is a closed subspace of BL (X, Y).
 - (b) Is it true that every continuous linear map on a normed space is compact? Justify your answer.
- V. (a) Let X be a normed space and A E CL (X). Show that every non-zero spectral value of A is an eigenvalue of A.
 - (b) Let X be a normed space and A c CL (X). Show that every eigen space of A corresponding to a non-zero eigen value of A is finite dimensional.
- VI. (a) State and prove Riesz representation theorem.
 - (b) Show that the Riesz representation theorem does not hold for an incomplete inner product space.

UNIT III

VII. (a) Let H be a Hilbert space and A c BL (H). Show that there is a unique B c BL (H) such that for all x, y c H,

$$(A(x), y) = (x, B(y)).$$

(b) Let H be the Hilbert space K^2 and $A:H \longrightarrow H$ be defined by :

A
$$(x(1), x(2)) = (x(2), x(1))$$
 for $(x(1), x(2))$ s H. Show that $A^* = A$.

VIII. (a) Let H be a Hilbert space and A s BL (H) -be self-adjoint. Show that A or – A is a positive operator if and only if

$$\langle A(x), y \rangle^2 \quad \langle A(x), x \rangle (A(y), y).$$

(b) Let H be a non-zero Hilbert space and A c BL (H) be self adjoint. Show that :

$$\{m_{A MA}\} C \sigma_{a}(A) = (A) = [m_{A MA}] 1.$$

IX. State and prove spectral theorem for compact self-adjoint operators.

 $(4 \times 16 = 64 \text{ marks})$