$\qquad$

# FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2013 (0UCSS) <br> <br> Mathematics <br> <br> Mathematics <br> MT 4C 15-FUNCTIONAL ANALYSIS——II 

Time : Three Hours
Maximum : 36 Weikhtare

> Part A
> Answer all the questions.
> Each question carries a weidhtuge of 1.

1. Let $X$, $Y$ and $Z$ be normed spaces. Show that if $F: X \rightarrow Y$ is continuous and $G: Y \rightarrow Z$ is closed, then Go $\mathrm{FX} \rightarrow \mathrm{Z}$ is closed.
2. Let $X_{0}$ be a dense subspace of a normod space $X$. Show that there is a linear isometry from $X^{\prime}$ onto $X_{\beta}^{\prime}$
3. Let $X$ denote the sequence space $l^{*}$. Let II \| be a complete norm on $X$ such that if $\| X_{m} \quad 0$, then $x_{m}(s)-x(s)$ for every $s=\mathbf{1}, \mathbf{2}, \ldots . . . .$. show that II II' is equivalent to the usual norm $0 \|_{2}$ on X .
4. Let $\left(K_{r m}\right)$ be a sequence of eigen values of a bounded linear operator on a normed space $X$. Show that if $\mathrm{K}_{\mathrm{m}} \rightarrow k$ in K , then $k$ is an approximate oigen value of A .
5. Show that dual of a separable reflexive thormed space is separable.
6. Give an example of a separable normed space which is not reflexive.
7. Give an example of a continuous map on a normed space which is not compact.
8. Let $E$ be a subset of a Hilbert space $H$ over $K$. Show that $E^{\perp 1} 1$ is the closure of the span of $E$.
9. Let $H$ be a Hilbert space over $K$ and $\operatorname{A\varepsilon BC}(H)$. Show that VII = $\| A$
10. Show that if $X$ is an inner product space and if $A \varepsilon B L(X)$, then there may not exist $B c B L(X)$ such that $(\mathbf{A}(\mathbf{x}), \mathbf{y})=(\mathbf{x}, \mathbf{B}(\mathbf{y}))$ for all $x, y \mathbf{c} H$.
11. Let $\mathbf{H}$ be a Hilbert space and $\mathrm{A} \varepsilon \mathrm{BL}^{(H)}\left(\mathbf{H}\right.$. Show that $\mathbf{A}$ is normal if $\|\mathrm{A}(x)\|=\left\|\mathrm{A}^{*}(x)\right\|$ for all $\times \mathrm{c} \mathbf{H}$.
12. Let $H$ be a Hilbert space and $A \& B L(H)$ be normal. Show that if $x_{1}$ and $x_{2}$ are cigen vectors of $A$ corresponding to distinct eisfon values, then $\mathbf{x}_{1} 1 \mathbf{x}_{2}$.
13. Let $H$ be a Hilbert space and $\operatorname{A\varepsilon BL}(H)$ be self adjoint. Show that $A^{2}>0$ and $A \leq\|A\| I$.
14. Give an example of Hilbert-Schmidt operator on the Hilbert space $\mathrm{H}=1^{2}$.
$(14 \times 1=14$ weiphtape

## Part B

Answer any seven questions.
Each question carries a Uetghtake of 2.
15. Let X be narmed space over K and $f \mathbf{X} \mathbf{K}$ be linear. Show that $f$ is closed iff $f$ is continuous.
16. Let $X$ and $Y$ be a Banach spaces and $F \varepsilon B L(X, Y)$. Show that $R(F)$ is linearly homeormurphic to (F) if and only if $\mathbf{R}(\mathbf{F})$ is closed in $Y$.
17. Let $X$ and $Y$ be normed spaces and $\operatorname{FrBL}(\mathbf{X}, \mathbf{Y})$. Show that $\mid \mathbf{F}^{\prime}{ }_{I I}=\|F\| \quad$ and $\mathbb{F}^{\wedge} J_{\mathrm{A}}=J_{Y} \mathbf{F}$, where $J$ and $J_{I}$ are the canonical embeddints of $X$ and $Y$ into $X^{\prime \prime}$ and $Y^{\prime \prime}$ respectively.
18. Show that if $1 \leq p<00$, then $l$ is reflexive.
19. Let $X$ be a Baneth space. Show that the set of all compact operators on $X$ is closed in $B L(X)$.
20. Let $\mathbf{H}$ be a Hilbert space and $F$ be a non-empty closed subspace of $\mathbf{H}$. Show that $\mathbf{H}=\mathbf{F}+\mathbf{F}$.
21. Let $H$ be a Hilbert space and $A \varepsilon B L(H)$. Show that if $A$ is self-edjoint, then $\|A\| \sup \left\{\|\left\langle(x), x_{i}^{\prime ;} ; x \quad H,\|x\| \leq 1\right\}\right.$.
22. Let $H$ be a Hilbert space and $A \varepsilon B L(H)$. Show that if $A$ is unitary, then for every orthonormal basis $\left\{u_{4}\right\}$ of $H,\left\{A\left(u_{n}\right)\right\}$ and $\left\{A^{*}\left\{u_{n i}\right)_{\}}\right.$are both orthonormst bases for $H$.
23. Let H be a non-zero Hilbert space and $A \varepsilon B L(H)$ he self-adjnint. Show that $\left\{m_{h}\right.$ MA $\} \operatorname{cad}(A)=\mathbf{a}(A) \subseteq\left[m_{A}\right.$ MA $]$.
24. Let $\mathbf{H}$ be a Hilbert space and $A x B L(H)$. Show that if $A$ is compact, then $A *$ is also compact.

## Part C

Answer any two questions.
Each question carries a wepightrig! of 4.
25. Let $X$ be normed space and $A s B L(X)$ be of finite rank. Show that $\sigma_{=}(A)=a_{s}(A)=a(A)$.
26. Let $X$ be a Banach space which is uniformly convex in some equivalent norm. Show that $X$ is reflexive.
27. State Riesz representation theorem. Show that the Riesz representation theorem does not hold for an incompelote inner product space.
28. Let $\mathbf{H}$ be a finite dimensional Hilbert space over $K$ and $A \varepsilon B L(H)$. Suppose that $K=C$ and $A$ is normal, or that $K=R$ and $A$ is self adjoint. Show that there is an orthonormal basis for $\mathbf{H}$ consisting of engenvectors of A.

