\qquad

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 4E 02—ALGEBRAIC NUMBER THEORY

Standard notation as in prescribed text is followed.
Part A
Answer all questions. Each question carries weightage 1 .

1. Express $t_{1}^{4}+4$ in terms of elementary symmetric polynomials $(\mathbf{n}=\mathbf{2})$.
2. Find the order of the group \mathbf{G} / H where \mathbf{G} is a free abelian group with basis x, y, z and \mathbf{H} is generated by $-\mathbf{2 x}, x+\mathbf{y}, \mathbf{y}+z$.
3. Find 0 such that $\mathbf{Q}(0)=Q(\sqrt{2}, \sqrt[3]{5})$.
4. Show that an algebraic number is an algebraic integer if and 'only if (iff) its minimal polynomial over Q has coefficients in Z.
5. Let $K=Q(\zeta)$ where $=e^{e 2 n^{1 / 5}}$. Calculate $N(a)$ and $T_{K}(a)$ for $\mathbf{a}=$
6. Let \mathbf{x} and \mathbf{y} be non-zero elements of a domain D. Prove that $x \mid y$ if $(x) \supset(\mathbf{y})$.
7. Find a ring which is not noetherian.
8. Is $\mathbf{1 0}=(3+i) \times(3-i)=\mathbf{2} \mathbf{5}$ an example of non-unique factorization in $Z[i]$? Give reasons for your answer.
9. True or False ?

A fractional ideal of is a finitely generated D-submodule of K.
10. Prove : If $\boldsymbol{\sigma}$ is a proper ideal of the ring of integers of the number field K_{1} then G^{*} properly contains D .
11. State Minkowskis theorem.
12. Show that the quotient group is $\mathbb{R} / 2$ is isomorphic to the circle group S.
13. Sketch the lattice R2 generated by $(-1,2)$ and $(2,2)$ and a fundamental domain for the lattice.
14. Let d be a squarefree positive integer and let $\mathrm{K}=\mathrm{Q}(\sqrt{d})$. Calculate a K_{\rightarrow},
($14 \times 1=14$ weightage)

Part B

Answer any seven questions.
Each question carries weightoge 2.
15. Let G be a finitely generated abelian group with no non-zero elements of finite order. Prove that G must be a free group.
16. Prove that the set of algebraic numbers is a subfield of the complex field C.
17. Let $K=Q(0)$ be a number field. Prove : If all k-conjugates of 0 are real, then the discriminant of any basis is positive.
18. Let K be a number field of degree n -prove that the 2 , the ring of integers of K , is a free abelian group of rank n.
19. Let d be a squarefree rational integer with $d 41(\bmod 4)$. Then prove that $Z[d]$ is the ring of integers of $\mathrm{Q}(\sqrt{d})$.
20. Prove that the group of units of $Q(\sqrt{-3})$ is the group $\left\{ \pm 1, \pm w, \pm w^{2}\right\}$ where $w=e^{-w^{i+a}}$
21. Prove that an integral domain 2 is noetherian if 73 satisfies the maximal condition.
22. Prove that an ring of integers of $\mathrm{Q}(\sqrt{-5})$ is not a unique factorization domain.
23. If x, y, z are integers such that $x^{2}+y^{2}=z^{2}$, prove that atleast one of x, y, z is a multiple of 3 .
24. Prove: If a_{1}, \quad, a_{n} is a basis of the number field K over Q, then $\sigma\left(\alpha_{1}\right), \quad \sigma\left(\alpha_{m}\right)$ are linearly independent over \mathbf{R}.
$7 \times 2=14$ weightage)

Part C

Answer any two questions.
Each question carries weightage 4.
Let K be a number field. Then prove that there is an algebraic integer $0 \mathrm{E} k$ such that $k=Q(\theta)$.
26. Let $\zeta_{2}=\mathrm{e}^{2}{ }^{4} P$ where p is an odd prime. Prove that $Z[\zeta]$ is the ring of integers of $\mathrm{Q}]$.
27. Let O be a domain in which factorization into irreducibles is possible. Prove that factorization into irreducibles is unique iff every irreducible is prime.
28. Prove that the equation $\mathrm{x}^{4}+\mathrm{y}^{4}=z^{2}$ has no integer solutions with $x, y, z \neq 0$.
($2 \times 4=8$ weightage)

