Name.....

(**Pages : 3**)

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 4E 02—ALGEBRAIC NUMBER THEORY

Time : Three Hours

Maximum : 36 Weightage

Standard notation as in prescribed text is followed.

Part A

Answer **all** questions. Each question carries weightage 1.

- 1. Express $\frac{1}{1} + 4$ in terms of elementary symmetric polynomials (n = 2).
- 2. Find the order of the group G/H where G is a free abelian group with basis x, y, z and H is generated by 2x, x + y, y + z.
- 3. Find 0 such that $Q(0) = Q(\sqrt{2}, \sqrt[3]{5})$.
- 4. Show that an algebraic number is an algebraic integer if and 'only if (iff) its minimal polynomial over Q has coefficients in Z.
- 5. Let $K = \mathbb{Q}(\zeta)$ where $= e^{2n^2/5}$. Calculate N (a) and $\mathbb{T}_{K}(a)$ for a =
- 6. Let x and y be non-zero elements of a domain **D**. Prove that x | y if $(x) \supset (y)$.
- 7. Find a ring which is not noetherian.
- 8. Is 10 = (3+i) x (3-i) = 2 x 5 an example of non-unique factorization in Z[i] ? Give reasons for your answer.
- 9. True or False ?

A fractional ideal of is a finitely generated D-submodule of K.

- 10. Prove : If **m** is a proper ideal of the ring of integers of the number field K₁ then **G**⁻ properly contains **D**.
- 11. State Minkowskis theorem.

Turn over

3547

- 12. Show that the quotient group is $\frac{1}{2}$ is isomorphic to the circle group *S*.
- 13. Sketch the lattice R2 generated by (= 1, 2) and (2, 2) and a fundamental domain for the lattice.
- 14. Let *d* be a squarefree positive integer and let $K = \mathbb{Q}(\sqrt{d})$. Calculate a $K \rightarrow K$

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries weightage 2.

- 15. Let G be a finitely generated **abelian** group with no non-zero elements of finite order. Prove that G must be a free group.
- 16. Prove that the set of algebraic numbers is a subfield of the complex field C.
- 17. Let K = Q(0) be a number field. Prove : If all k-conjugates of 0 are real, then the discriminant of any basis is positive.
- 18. Let K be a number field of degree n-prove that the *2*, the ring of integers of K, is a free **abelian** group of rank n.
- 19. Let d be a squarefree rational integer with $d \neq 1 \pmod{4}$. Then prove that $\mathbb{Z}\begin{bmatrix} d \end{bmatrix}$ is the ring of integers of $\mathbb{Q}(\sqrt{d})$.
- 20. Prove that the group of units of $\mathbb{Q}(\sqrt{-3})$ is the group $[\pm 1, \pm w, \pm w^2]$ where $w = e^{-w^2/4}$
- 21. Prove that an integral domain 2 is noetherian if \mathcal{D} satisfies the maximal condition.
- 22. Prove that an ring of integers of $\mathbb{Q}(\sqrt{-5})$ is not a unique factorization domain.
- 23. If x, y, z are integers such that $x^2 + y^2 = z^2$, prove that **atleast** one of *x*, *y*, *z* is a multiple of 3.
- 24. Prove: If a_1 , a_n is a basis of the number field K over Q, then $\sigma(\alpha_1)$, $\sigma(\alpha_n)$ are linearly independent over \mathbb{R} .

 $7 \ge 2 = 14$ weightage)

Part C

Answer any **two** questions. Each question carries weightage **4**.

. Let K be a number field. Then prove that there is an algebraic integer $0 \in k$ such that $k = \mathbb{Q}(0)$.

- 16. Let $\zeta = e^{2^{\lfloor \frac{1}{p} \rfloor}}$ where *p* is an odd prime. Prove that $\mathbb{Z}[\zeta]$ is the ring of integers of Q {].
- 27. Let *O* be a domain in which factorization into **irreducibles** is possible. Prove that factorization into **irreducibles** is unique **iff** every irreducible is prime.
- 28. Prove that the equation $x^4 + y^4 = z^2$ has no integer solutions with $x, y, z \neq 0$.

 $(2 \times 4 = 8 \text{ weightage})$