Reg.	NIO								
REG.	1 N ()_	 _	 	_	 	_	_	_	_

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 3C 12—FUNCTIONAL ANALYSIS—I

Time: Three Hours Maximum: 36 Weightage

Part A

Answer **all** questions.

Each question carries 1 weightoge.

- 1. Prove or disprove: A sequence in a metric space is bounded in X iff it is Cauchy.
- 2. Show that the metric space \mathcal{F} is complete.
- 3. Define n^{th} Dirichlet Kernel D_{ii} and evaluate \mathbf{j} D_{ii} (t) dt.
- 4. State Riesz's lemma.
- 5. Let Y be a subspace of a normed space X. Show that $Y^0 \neq \emptyset$ iff Y = X.
- 6. Illustrate with an example that a linear map on a linear space X may be continuous with respect to some norm on X, but discontinuous with respect to another norm on X.
- 7. Let X be an inner product space and x E X. Show that (x, y) = 0 for all y E X iff x = 0.
- 8. Show that if E and F are closed subsets of a Hilbert space H and $\mathbb{E} \perp F$, then $\mathbb{E} + F$ is close(H.
- 9. Let X be an inner product space. Show that if E c X is convex, then there exists at most one approximation from E to any x E X.
- 10. Let X be a normed space over K. Let $\{a_1, a_2, ..., a_n\}$ be a linearly independent set in X. Shother are f_1, f_2, f_{in} in x' such that $f_1(a_i) = \delta_{ij}, 1$ j m.

11

2 D 9159

- 11. With usual notations, show that $\mathbb{C}_{\mathfrak{a}}(T)$ is not closed in $\mathbb{C}_{\mathfrak{o}}(T)$.
- 12. Define **Schauder** basis for a **normed** space X and show that if there is a **Schauder** basis for a **normed** space X, then X must be separable.
- 13. Show that the linear space C_{oo} cannot be a **Banach** space in any norm.
- 14. State Uniform boundedness principle and interpret it geometrically.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions.

Each question carries 2

- 15. Show that the set of all polynomials in one variable is dense in c([a, b]) with the sup metric.
- 16. Show that the metric space LP([a,bp] is separable for 1 p < co, but the metric space LO([a,b]) is not separable.
- 17. Show that for all $x \in K''$

and

$$|\mathbf{x}|$$
, $\sqrt{n} |\mathbf{x}|_0 < \mathbf{n} |\mathbf{x}|_0$.

- 18. Let $X = K^3$ for x = (x(1), x(2), x(3)) e X, let $\|x\| = (Ix(1))^{\frac{3}{2}} + |x(2)|^{\frac{3}{2}} + |x(3)|^{\frac{3}{2}}$. Show that II II is a norm on K^3 .
- 19. Let X and Y be normed spaces and Z be a closed subspace of X. Show that if $F \in BL(X)$, Y) and we let F(x) = (x + z) for $x \in X$, then $F \in BL(X, Y)$ and 110 = F
 - 1. Show that if a non-zero Hilbert space **H** over **K** has a countable orthonormal basis then **H** is linearly isometric to \mathbb{K}^n for some n, or to 1^2 .

Let E be a non-empty closed convex sub-set of a Hilbert space H. Show for each $x \in H$, there exists a unique best approximation from E to x.

3 **D91595**

22. Let $X = K^2$ with the norm II IL • Consider $Y = \{(x(1), x(2) E X) : x(1) = x(2)\}$, and define $g = \{(x(1), x(2)) = x(1)\}$.

Show that the Hahn-Banach extensions of g to X are given by:

$$f(x(1), x(2)) = t x(1) + (1-t) x(2)$$
, where $t \in [0,1]$ is fixed.

- 23. Show that a normed space X is a Banach space iff every absolutely summable series of elements in X is summable in X.
- 24. Show that a subset E of a normed space Xis bounded in X iff f(E) is bounded in K for every $f \in X'$ (7 x 2 = 14 weightage)

Part C

Answer any **two** questions. Each question carries 4 weightage.

- 25. Show that every finite dimensional subspace of a normed space X is closed in X.
- 26. Let $\{u_{i,j}\}$ be an orthonormal set in a Hilbert space H. Show that $\{u_{i,j}\}$ is an orthonormal basis for H iff space $\{u_{i,j}\}$ is dense in H.
- 27. State and prove Hahn-Banach separation theorem.
- 28. Let X be a normed space and Y be a closed subspace of X. Show that X is a **Banach space** iff Y and X are Banach spaces in the induced norm and the quotient norm, respectively.

 $(2 \times 4 = 8 \text{ weightage})$