Reg. No....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2012

(CUCSS)

Mathematics

MT 3C 12—FUNCTIONAL ANALYSIS—I

(2010 admissions)

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all question&

Each question carries 1 weighting.

- 1. Prove or disprove: A sequence (x_n) in the metric space $1^1, 15 p 5_a$, converges to x in **if** $x_n(j) = x(j)$ for each j = 1, 2, 3, ...
- 2. Give an example of a bounded sequence in a metric space which is not eauchy.
- 3. State Minkowski's inequality for measurable functions on a measurable subset of R.
- 4. Define nth Dirichlet Kernal D and show that $\int D_{t}(t) dt = 2\pi$
- 5. Let Y be a subspace of normed space X. Show that is a normed space.
- 6. Define inner product space.
- 7. State Gram-Schmidt orthonormalization theorem.
- 8. Let (n) be a sequence in a Hilbert space H. Show that if $\prod_{n=1}^{\infty} \| \cdot \|_{\infty}$ then $\sum_{n=1}^{\infty} \| \cdot \|_{\infty}$ converges in H.
- 9. Let X be an inner product space. Let $E \subset X$ and $x \in E$. Show that there exists a best approximation from E to x if $x \in E$.
- 10. Let X be a normed space, $f \in X'$ and f 0. Let $a \in X$ with f(a) = 1 r > 0. Show that $U(a,r) \cap Z(f) \neq 0$ iff f
- 11. Show that C_{oo} is not closed in r
- 12. What is the geometrical interpretation of the uniform boundedness principle?

Turn over

D 31326

- 13. Let X be a normed space over K and $x \in X$. Define j K by $f_X(f) = f(x)$ for $f \in Show$ that $j \in X''$ and $\prod x \in X \cap X$.
- 14. Let X be a normed space and (x_n) be a sequence in X such that $(f(x_n))$ converges in K for every $f \in X$. Show that the sequence (x_n) is bounded.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions.

Each question carries 2 weighters.

- 15. Show that a non-empty subset of a separable metric space is separable in the induced metric.
- 16. State and prove Riemann-Lebesgue lemma.
- 17. Prove that the three norms 112 and II are equivalent.
- 18. Let X and Y be normed spaces and Z be a closed subspace of X. Show that if F 6 BL (X, Y) and we let F(x) = X for $X \in X$, then F c BL $(X, Y) \in Y$
- 19. Let \leq , \geq be an inner product on a linear space X and T x X be a linear one-to-one map. Let : $\leq x, y \geq_x = \langle T(x), T(y) \rangle$ for $x, y \in X$.

Show that $\leq >_{\Gamma}$ is an inner product on X.

- 20. State and prove Bessel's inequality.
- 21. Let $X = \mathbb{C}([-1,1])$, x(t) = 1 t is $x_{w}(t) = 0$ and $x_{w}(t) = \cos pt$ for t = -1,1. Show that the best approximation from span $\{x_{0}, x_{1}\}$ to x is
- 22. Let Y be a subspace of a normed space X and a e X but a y. Show that there is some f e such that $\mathcal{Y} = 0$, $f(a) = \text{dist } (a, \overline{Y})$ and II f(1) = 1.
- 23. Show that a normed space X in a Banach space iff every absolutely summmable series of elements in X is summable in X.
- 24. Let X be a normed space and E be a subset of X. Show that E is bounded in X iff f (E) is bounded in K for every $f \in X$.

= 14 weightage)

3 D31326

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. Show that for 1 $p \le co$, the metric space p is separable, but $p \le co$ is not separable.
- 26. Show that every finite dimensional subspace of a normed space X is closed in X.
- 27. Show that a non-zero Hilbert space H is separable if H has a countable orthonormal basis.
- 28. Let X be a normed space. Show that for every subspace Y of X and every $g \in y'$, there is a unique Hahn-Banach extension of g to X if X is strictly convex.

 $2 \times 4 = 8$ weightige)