(Pages : 2) Name
Reg. No·····

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2012

(Non-CUCSS)

Mathematics

Paper XII—FUNCTIONAL ANALYSIS—I

(2002 Admissions)

Time: Three Hours

D 31617

Maximum: 80 Marks

Part A

Answer **all** questions. Each question carries 4 marks.

- I. (a) Define Cauchy sequence and show that every Cauchy sequence is bounded. Is the converse true ¶ Justify your answer.
 - (b) Prove that among all the normed spaces $L^{p}([0,1])$; $1 \le p \le a$, only the space $L^{2}([0,1])$ is an inner product space.
 - (c) Show that the linear space Coo cannot be a Banach space in any norm.

Part B

Answer any four questions without omitting any unit. Each question carries 16 marks.

UNIT I

- II. (a) Show that the intersection of a finite number of dense open subsets of a metric space X is dense in X.
 - (b) Let T be a compact metric space and E c C (T). Suppose that E is bounded and at each t c T. Show that E is totally bounded in the sup metric on C (T).
- III. (a) Show that for $1 \le p \le 00$, the metric space LP (E) is complete for any measurable subset E of R.
 - (b) Let x be a continuous k-valued function on [—it, it] such that x (n) = x (-π). Show that the sequence of arithmetic means of the partial sums of the Fourier series of x converges to x uniformly on [-π, π].
 Turn over

- IV. (a) State and prove Riesz Lemma.
 - (b) Let X be a normed space. Show that X is finite dimensional if every closed and hour subset of X is compact.

UNIT II

- V. (a) Show that every linear map on a finite dimensional normed space is continuous.
 - (b) Show that a linear functional f in a normed space X is continuous iff the zero space Z(f) is closed in X.
 - (c) Let X be a normed space and \mathbb{P} BL (X) satisfy P2 = P. Show that $\|P\| = 0$ or PI(1.
- VI. (a) Let X be a normed space over k, Y be a subspace of X and g E Y' Show that there is some $f \in X'$ such that f' = g and $\|f\| = \|g\|$.
 - (b) Show that there exists a linear functional f on \mathcal{F} such that $\|f\| = f(a)$ and f(x) = f(x) for all $x \to x \to x$ where $a = x \to x$ and f(x)(j) = x(j+1) for j = 1, 2, ...
- VII. (a) Let $\{u_i\}$ be an orthonormal set in a Hilbert space H. Show that $\{u_i\}$ is an orthonormal basis for H iff $x \in H$ and (x, u) = 0 for all a, then x = 0.
 - (b) Let $H = L^2([0,1])$. Show that $\{1, 2 \cos \pi t, 2 \cos 2\pi t, ...\}$ is an orthonormal basis for H.

UNIT III

- VIII. (a) Show that a normed space Xis a Banach space iff every absolutely summable series of elements in X is summable in X.
 - (b) Show that every normed can be embedded as a dense subspace of a Banach space.
 - IX. (a) Let X be a normed space and E be a subset of X. Show that E is bounded in X if f(E) is bounded in h for every f(E).
 - (b) Let $15_p S cc$ and $X = C_{00}$ with the norm 11 | For n = 1, 2, ... let $f_n(x) = nx(n)$; $x \in X$. Show that $f_n(x) \to 0$ for every $x \in X$, but $||f_n(x)|| \to 0$.
 - X. (a) State and prove closed graph theorem.
 - (b) Show that the closed graph theorem may not hold for normed spaces.

 $(4 \times 16 = 64 \text{ marks})$