D 31619 (Pag	ges : 3)	Name
--------------	----------	------

Reg. No......

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2012

(Non-CUCSS)

Mathematics

Paper XIV-DIFFERENTIAL GEOMETRY

(2002 admissions)

Time: Three Hours Maximum: 80 Marks

Part A

Answer **all** questions. Each question carries 4 marks.

- 1 (a) Show that the graph of any function f \longrightarrow R is a level set for some function $f:\mathbb{R}^{n+1}$
 - (b) Find the integral curve through the point (1, 1) of the vector field $X \otimes \mathbb{R}^2$ with associated function $X \otimes \mathbb{R}$ given by $X(x_1, x_2) = (x_2, x_1)$.
 - (c) Show that covariant differentiation of vector fields has the following property

 $(X \cdot Y) = (DA)$ + X(p). P S , Y on the fields on

(d) Let S be on oriented 2-surface and E S Show that fur each

 $v, to E S_L L_v(v) \times L_v(w) = K(p) v \times w$

 $(4 \times 4 = 16 \text{ marks})$

Part B

Answer any **four** questions without omitting any unit. Each question carries 16 marks.

Unit I

- 2. (a) Let X he a smooth vector field on an open set U $\mathbb{R}^{2-\frac{1}{2}}$ and let $p \in U$. Prove the existence and uniqueness of the maximal integral curve of X through p.
 - (b) A smooth vector field X on an open set U of \mathbb{R}^{n} is said to be complete if for each $p \to \mathbb{R}$ U, the maximal integral curve of X through p has domain equal to \mathbb{R} . Determine which of the following vector fields are complete:
 - (i) $X(x_1, x_2) = (x_1, x_1, 1, 0) U = R^2$.
 - (ii) $X(x_1,x_2) = (x_1,x_2,1+ < 0), = 1R^2.$

Turn over

3. (a) Let $p \to U$ be an open set in \mathbb{R}^n and $f: U \to \mathbb{R}$ be smooth. Let $p \to U$ be a regular point of f with f(n) = c. Prove that the set of all vectors tangent to f(n) at f(n) is equal to f(n).

2

- (b) Show that the set S of all unit vectors at all points of \mathbb{R}^2 forms a 3-surface in \mathbb{R}^4 .
- 4. Let S be a compact oriented n-surface in sphere \mathbb{S}^n . Prove that the Gauss map, maps S onto the unit

Unit II

- 5. (a) Let S be an n-surface in p, let p, let p. S be a parametrized curve in 5, let to p, and let p. Then prove that there exists a unique vector field p, tangent p along p, which is parallel and has p is p.
- (b) Show that if a S is a geodesic in an n-surface and if f3 = acoh is a reparametrization of a (with $b \rightarrow I$), then β is a geodesic in S if and only if there exist $a, b \in R$ such that h(t) = at + b for all t
- 6. (a) Let S be an oriented n-surface in $p \to S$, $v \to S_p$. Define the Weingarten map $p \to S$ at $p \to S$. Choosing your own orientation, compute the Weingarten map for the circular cylinder $p \to S$ at $p \to S$.
 - (b) Let a(+) = (x(+), y(+)) ($t \in I$) be a local parametrization of the oriented plane that K = (x, y(+), y(+)).
- 7. Let C be a oriented plane curve: Prove that C has a global parametrization.

Unit III

- 8. (a) Let S be an oriented n-surface in not and let V be a unit vector in $S_p p E$. Then prove there exists an open set $V \in \mathbb{R}^+$ containing p such that $S \cap N(p) \cap V$ is a plane curve. Further, the curvature at p of this curve (suitably oriented) equals the normal curvature p(p).
 - (b) Find the Gaussian curvature K S \rightarrow R where S is the cone xi $+^{x/2}$ $-^{x/2}$ $O_{55} > 0$.
- 9. (a) Let S be an n-surface in not and let pES. Then prove that there exists an open set V about p in not a parametrized n-surface ω: U→ not S is a one-to-one map from U onto V □S
 - (b) Show that the Weingarten map at each point of a parametrized n-surface is self-adjoint.

- 10. (a) Let S be an n-surface in \mathbb{R}^R and let $f: S \to \mathbb{R}^R$ be such that $f \circ \mathbb{R}^R$ is smooth for each local parametrization \mathbb{R}^R : \mathbb{R}^R S Prove that f is smooth.
 - (b) Let S be a compact, connected oriented n-surface in whose Gauss-Kronecker curvature is nowhere zero. Then prove that the Gauss map N

 $(4 \times 16 = 64 \text{ marks})$