Name

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 3C 11-COMPLEX ANALYSIS

Time: Three Hours Maximum: 36 Weightage

Part A

Answer **all** questions.

Each question carries 1 weightage.

1. Let
$$T_1 = -\frac{z+2}{z+3}$$
; $T_2 = \frac{\text{Compute (T1 o T2)}}{z+1}$

- 2. Show that if a linear transformation has or for its only fixed point, then it is a translation.
- 3 Show that a linear transformation preserves cross ratios.
- 4. Find the usage of the rectangular hyperbola $\{z = x + iy : xy = 1\}$ under the map $f(z) = z^2$.
- 5. State Cauchy's Theorem in a disk.

6. Compute
$$\frac{z}{z-1}$$
 dz, where $r(t) = 1 + \frac{dt}{2\pi}$. $O(t) = 2\pi$.

- 7. State Weierstruss' Theorem on essential singularity.
- 8. Show that if f is analytic in a region G and if $f \neq 0$, then the zero of f are isolated.

9. Find the poles and residues of the function
$$\frac{1}{\left(z^2-1\right)}$$

- 10. State the Maximum Principle for harmonic functions.
- 11. How many roots does the equation z^7 $2z^4 + 6z^2 z + 1 = 0$ have in the disk $\{z : |z| < 1\}$
- 12. Obtain the power series expansion of $\frac{1}{z+3}$ about z=1 in the disk $\{z:|z-1|=4\}$.
- 13. Show that an elliptic function without poles is a constant.
- 14. Show that a non-constant elliptic function has equally many poles as it has zeros.

 $(14 \times 1 = 14 \text{ weightage})$

Turn over

D 91594

Answer any seven questions. Each question carries 2 marks.

Part B

- 15. Show that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or a straight line.
- 16. Describe the mapping properties of w = M
- 17. Prove that a bounded entire function reduces to a constant.
- 18. Let r be a closed rectifiable curve. Prove that n(r, z) is a constant in each of the regions determined by r.
- 19. State and prove Schwarz's lemma.
- 20. Suppose f is analytic in a region 0 and statistics the inequality If (z) 2 < 2 in 0. Show that

$$\frac{f(z)}{f(z)} = 0$$
 for every closed curve r in 0.

- 21. State and prove Hurwitz theorem.
- 22. Obtain the Laurent series expansion of $\frac{1}{z(z-1)(z-2)}$ in the regions :

(i)
$$0 < z < 1$$
; (ii) $1 < z < 2$; and (iii) $|z| > 2$.

- 23. State and prove Rouche's Theorem.
- 24. Derive the Legendre relation:

$$\eta_1 t v_1 \quad \eta_0 t v_0 = 2\pi i$$

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries 4 weightage.

- 25. State and prove Cauchy's theorem for a rectangle.
- 26. State the residue theorem. Explain how it can be applied to calculate real integrals. Illustrate with an example.
- 27. Derive the Poisson integral formula for harmonic functions.
- 28. Derive the formula for the Weierstrass elliptic function P (z) in the form:

$$\mathbf{P}(z) = \sum_{z=1}^{\infty} + \sum_{w \neq 0} \left| \frac{1}{(z-w)^2} - \frac{1}{w} \right|$$

 $(2 \times 4 = 8 \text{ weightage})$