D 51671 (Pages: 3) Name...

Reg. No

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2013

(CUC88)

Mathematics

MT 3C 13—TOPOLOGY—II

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Define uniform convergence and give an example of it.
- 2. Let A be a subset of a topological space X and let $f : A \to \mathbb{R}$ be continuous. Prove that any two extensions of f to X agree on A.
- 3. Prove that intersection of any families of boxes is a box.
- 4. Prove that if X_1 is a T_1 -space for each $i \in I$ then $\prod_{i \in I} X_i$ is also a T_1 -space in the product topology.
- 5. Let X_i , $i \in I$ be an indexed family of topological spaces and let $X = \prod_{E} X_i$. If $\{x_{i,i}\}$ is a sequence in X such that $\{x_{i,i}\}$ converges to $x \in X$, then prove that the sequence $\{\pi_i : (x_{i,i})\}$ converges to $\pi_i : (x)$ in X_i for each I.
- 6. State Urysohn's metrization theorem.
- 7. Let X, Y and Z be topological spaces. If $h, h' : X \to Y$ are homotopic and $k, k' : Y \to Z$ are homotopic, then prove that koh and $k' \circ h'$ are homotopic.
- 8. Prove that the fundamental group of unit ball in R is trivial.
- 9. Define covering map and give an example of it.
- 10. Give an example of a countably compact space.
- 11. Are compact spaces sequentially compact ? Justify your answer.
- 12. Let A be a subset of a complete metric space (X; d) such that A is complete wir to the metric induced on it. Prove that A is closed in X.

Turn over

- 13. Prove that finite union of totally bounded sets is totally bounded.
- 14. Prove that \mathbb{R} with usual topology is of second category.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question has weightage 2.

- 15. Let $\sum_{n=1}^{M_n} M_n$ be a convergent series of non-negative real numbers. Let $\{f_n \mid n \text{ is a sequence of real valued functions on a topological space X such that for each <math>x \in X$ and $n \in N$, $I_{f_n}(x) = M_n$. Prove that the series $\sum_{n=1}^{\infty} I_n$ converges uniformly to a real valued function on X.
- 16. Prove that projection functions are open.
- 17. Prove that a product of topological spaces is completely regular if and only if each co-ordinate space is completely regular.
- 18. Let X be a topological space and let $x \in X \cdot \text{Let } e_x$ be the constant path $e_x : I \to X$ carrying all of I to the point x. If f is a path in X from x_0 to x_1 , then prove that $[f]^* = [f]$.
- 19. Prove that every continuous, real-valued function on a countably compact space is bounded and attains its extrema.
- 20. Prove that a subspace of a locally compact Hausdorff space is locally compact if and only if it is open in its closure.
- 21. Prove that every compact metric space is complete.
- 22. If a topological space X is regular and locally compact at a point $x \to X$, then prove that x has a local base consisting of compact neighbourhoods.
- 23. Show by an example that total boundedness is not topologically invariant.
- 24. Let $(x_1, d_1), (x_2, d_2)$ be complete metric spaces prove that $x_1 \times x_2$ is complete with respect to the metric:

$$d = x2$$
, $(h, y2) = \max \{d_i(xi) = d_2(x_2, y_2)\}$

 $(7 \times 2 = 14 \text{ weightage})$

3

D 51671

Part C

Answer any two questions. Each question has weightage 4.

- 25. Prove that a product of topological spaces is connected if and only if each co-ordinate space is connected.
- 26. Prove that a topological space is completely regular if and only if the family of all continuous real-valued functions on it distinguishes points from closed sets.
- 27. Prove that the map $p \mathbb{R}$ given by the equation :

$$p(x) = (\cos 2\pi x, \sin 2n x)$$

is a covering map.

28. Prove that any continuous function from a Tychnoff space into a compact, Hausdorff space can be extended continuously over the stone Cech compactification of the domain.

 $(2 \times 4 = 8 \text{ weightag})$