Name

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2012

(CUCSS)

Mathematics

MT 3C 13—TOPOLOGY—II

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions. Each, question has weightage 1.

- 1. Prove that the intersection of any family of boxes is a box.
- 2. Prove that the projection functions are open.
- 3. Prove that if; is a T_2 -Space far each $I \in I$, then $X = X_1$ is also a T_2 -space in the product topology.
- 4. Explain countably productive topological property.
- 5. Let {Y, if E I} be a family of sets, X a set and for each if E I, Y; a function. Prove that the evaluation function is the only function from X into if W whose composition with the projection Y, equals f for all iel.
- 6. State a necessary and sufficient condition for embedding a topological space in the Hilbert cube.
- 7. Define a simply connected space and give an example.
- 8. Show that if $P \Vdash E$ B is a covering map, then p is an open map.
- 9. Let a covering map P: R S' be given by $p(x) \equiv (\cos 2\pi x, \sin 2n x)$. Find a lift of the path [0,1] S' defined by $f(x) = (\cos \pi x, \sin ax)$.
- 10. Prove that a continuous real-valued function on a countably compact space is bounded and attains its extrema.
- 11. Let \mathbb{Z} be a base for a topological space X such that every cover of X by members of \mathfrak{Z} has a finite subcover. Prove that X is compact.

Turn over

- 12. Prove that every locally compact Hausdorff space is regular.
- 13. Give an example of a metric space which is complete but not compact.
- 14. Define Completion of a metric space (X, d).

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question has weightese 2.

- 15. Let A be a closed subset of a normal space X and suppose $f : A \rightarrow (-1,1)$ is continuous. Prove that there exists a- continuous function F : X (-1,1) such that F(x) = f(x) for all $x \in A$.
- 16. Let $\{(x_i, T_i): i \in I\}$ be an indexed collection of topological spaces and let T be **the product** topology on the set $\{(V_1): V_1 \in T_1, i \in I\}$ is a sub-base for T.
- 17. Let (X, d) be a metric space and let X. be any positive real number. Prove that there exists a metric e on X such that e(x, y) λ for all $x, y \in X$.
- 18. Prove that a topological space is a Tychonoff space iff it is ambeddable into a cube.
- 19. Prove that path homotopy p) is an equivalence relation on the set of paths in a topological space X.
- 20. If $h: (X, x_0) \to (Y, y_0)$ is a homeomorphism of X with Y, prove that h_* is an isomorphism of (X, x_0) with $\pi_*(Y, y_0)$.
- 21. Prove that sequential compactness is preserved under continuous functions.
- 22. Let X be a Tychonoff space, (e, (x)) its Stone-Cech compactification and suppose $f: X \to [0,1]$ is continuous. Prove that there exists a map $g: \beta(X) \to [0,1]$ such that goe = f.
- 23. Let A be a subset of a metric space (X, d) such that A is complete with respect to the metric induced on it. Prove that A is closed in X.
- 24. Prove that the range of the embedding h:(X,d) (\hat{X} , e) is a dense subset of \hat{X} in the metric topology induced by e.

 $(7 \times 2 = 14 \text{ weightage})$

D 31327

Part C

3

Answer any two questions. Each question has weighted 4.

- 25. Prove that metrisability is a countably productive property.
- 26. Prove that a topological space is embeddable in the Hilbert cube iff it is second countable and T₃.
- 27. Let $p: E \to B$ be a covering map and let $p(e_0) = b_{u}$. Let the map $F: 1 \times I \to B$ be continuous with $F(0, 0) = b_{u}$. Prove that there is a lifting of F to a continuous map such that $(0, 0) = e_{u}$.
- 28. State and prove Alexander sub-base theorem.

 $(2 \times 4 = 8 \text{ weightage})$