D 71329	(Pages : 2)	Name
		Reg. No

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics

MT 3C 13—TOPOLOGY II

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Prove that if a product is non-empty, then each projection function is onto.
- 2. Let $\mathbb{C}_{\mathbb{I}}$ be a closed subset of a space Xi, for \mathbb{I} E I. Prove that $\mathbb{I}_{\mathbb{I}}$ $\mathbb{C}_{\mathbb{I}}$ is a closed subset of $\mathbb{I}_{\mathbb{I}}$ X, with respect to the product topology.
- 3. Define a cube and a Hilbert cube.
- 4. Give an example of a topological property which is not productive.
- 5. Prove that if the evaluation map of the family of functions is one-to-one, then that family distinguishes points.
- 6. Give an example of a matric space which is not second countable.
- 7. Let f and f1 be two paths in a space X such that f is path homotopic to ft. Prove that 1^1 is path homotopic to f.
- 8. If X is any convex subset of \mathbb{R}^n prove that (X, x_0) is the trivial group.
- 9. Prove that the map $P: R \to S$ given by $P(x) = (\cos 2\pi n, \sin 2\pi n)$ is a covering map.
- 10. Prove that a continuous function from a compact metric space into another metric space is uniformly continuous.
- 11. If a space X is regular and locally compact at a point $x \to X$, then prove that x has a local base consisting of compact neighbourhoods.
- 12. Describe the one-point compactification of a topological space X.
- 13. Give an example of a metric which is bounded but not totally bounded.
- 14. Define nowhere dense set in a topological space X. Give an example of a nowhere dense set in the real line with the usual topology.

 $(14 \times 1 = 14 \text{ weightage})$

Turn over

Part B

Answer any **seven** questions. Each questions has weightage 2.

- 15. Let A be a closed subset for a normal space X and suppose $f: A \rightarrow (-1, 1)$ is continuous. Prothat there exists a continuous function $F: X \rightarrow (-1, 1)$ such that F(x) = f(x) for all $x \in A$
- 16. If the product is non-empty, then prove that each co-ordinate space is embeddable in it.
- 17. Prove that a product of topological spaces is regular if each co-ordinate sapce is regular.
- 18. State and prove the embedding lemma.
- 19. Let X be path connected and \mathbf{x}_{\parallel} and \mathbf{x}_1 be two points of X. Prove that π_{\parallel} (X, \mathbf{x}_0) is isomorphic \mathbf{x}_{\parallel} (X, \mathbf{x}_1).
- 20. Let A be a strong deformation retract of a space X. Let $a_0 \to A$ Prove that the inclusion map $j: (A, a_0) \to (X, a_0)$

induces an isomorphism of fundamental groups.

- 21. Let $\{X_i: i \in I\}$ be an indexed family of non-empty compact spaces and let x be their topologic if product. Prove that X is compact.
- 22. Let X be a **Hausdorff** space and let Y be a dense subset of X. If Y is locally compact in the relative topology on it, prove that Y is open in X.
- 23. Prove that a metric space is compact if and only if it is complete and totally bounded.
- 24. Prove that equivalence of cauchy sequences is an equivalence relation on the set of all cauch sequences in a metric space (x, d).

 $(7 \times 2 = 14 \text{ weight } \circ \text{g})$

054

Part C

Answer any **two** questions.

Each question has weighted 4.

- 25. Prove that metrisability is a countably productive property.
- 26. State and prove Urysohn's metrisation theorem.
- 27. Let $P: E \to B$ be a covering map, let $P(e_0) = b_0$. Prove that any path $f: [0,1] \to B$ beginning at b_0 has a unique lefting to a path f in E beginning at e_0 .
- 28. Prove that the one-point compactification of a space is **Hausdorff** if and only if the space is locally compact and **Hausdorff**.

(4 x 2.= 8 weightage)