	Reg. No
	SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014
(CUCSS)	
	Mathematics
MT 2C 08—TOPOLOGY—I	
Time:	Three Hours Maximum : 36 Weightage
Part A (Short Answer Type Questions)	
	Answer all the questions. Each question has weightage 1.
1.	Give an example of an open set in a metric space.
2.	Give examples of a discrete topology and an in-discrete topology on a set.
3.	Give an example of a closed set in the set of real numbers with usual topology.
4.	Distinguish between base and sub-base of a topological space.
5.	Define diameter of a set in a metric space. Illustrate using an example.
6.	Write an example of a divisible property in a topological space.
7.	Distinguish between path connectedness and connectedness in topological spaces.
8.	Give an example of a topological space that is T_o but not T_1 .
9.	Define embedding of a topological space into another.
10.	Distinguish between open maps and closed maps in topological spaces.
11.	Define mutually separated sets in a topological space. Give example of a pair of mutually separated sets.
12.	Define component of a topological space. Give an example.
13.	Prove that every regular second countable space is normal.
14.	State the Lebesgue covering lemma.
	$(14 \times 1 = 14 \text{ weightage})$
	Part B (Paragraph Type Questions)

(Pages : 2)

C 63091

Answer any **seven** questions. Each question has weightage 2.

15. Prove that the semi-open interval topology is stronger than the usual topology on the set of real numbers.

Turn over

Name.....

- 16. Let [xn] be a sequence in a metric space (X:d). Then prove that {x,1} converges toy in X, if for every open set U containing y there exists a positive integer N such that for every integer n N, xn e U.
- 17. Prove that second countability is a hereditary property in a topological space.
- 18. If A and B are any two subsets of a topological space X, prove that $\overline{A u B} = A u B$.
- 19. Prove that the topological product of a finite number of connected spaces is connected.
- 20. Prove that a set is closed if and only if it contains its boundary.
- 21. Prove that inverse image of an open set under a continuous function is open.
- 22. Prove that a compact subset of a Hausdorff space is closed.
- 23. Prove that every open surjective map is a quotient map.
- 24. If $f \times Y$ is a continuous surjective map, prove that if X is connected then so is Y.

 $(7 \times 2 = 14 \text{ weightage})$

Part C (Essay Type Questions)

Answer any two questions. Each question has weighted 4.

- 25. Prove that the usual topology in the Euclidean plane \mathbb{R}^- is strictly weaker than the topology induced on it by the lexicographic ordering.
- 26. Let X be a set, T be a topology on X and S be a family of subsets on X. Then prove that S is a subbase for T if and only if S generates T.
- 27. Prove that a subset of the real line is connected if and only if it is an interval.
- 28. State and prove Urysohn's lemma.

 $(2 \times 4 = 8 \text{ weightage})$