3090
วอบฮบ

(Pages : 3)

Name.....

Reg. No....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

(CUCSS)

Mathematics

MT 2C 07-REAL ANALYSIS-II

Time: Three Hours

Maximum: 36 Weightage

Part A

Short answer questions 1-14. Answer all questions.

Each question has 1 weightage.

- 1. Let X be a vector space and let $\dim X = n$. Prove that a set E of n vectors spans X if and only if E is independent.
- 2. Let A E L(x) and let $x \in \mathbb{R}^n$. Prove that A'(x) = A.
- 3. Define contraction mapping on a metric space and give an example of it.
- 4. Let $f = f_2$ be the mapping of R^2 into R^2 given by

$$f(x, y) = \exp \cos y, f(x, y) = \exp \sin y.$$

Show that the **Jacobian** of f is not zero at any point of \mathbb{R}^2 .

- 5. Find the **Lebesgue** outer measure of the set $\{1 \pm \frac{1}{2^n} : n = 1, 2, 3, \dots\}$.
- 6. Let A and B be measurable sets such that A C B. Prove that $m^*(A) \le m^*(B)$.
- 7. Is the set of irrational numbers in the interval [1,100] measurable? Justify your answer.
- 8. Prove that constant functions are measurable.
- 9. Give an example where strict inequality occur in Fatou's lemma.
- 10. Show that if f is integrable, then so is |f|.
- 11. Let $\{f_n\}$ be a sequence of measurable functions defined on a measurable set E of finite measure. If f_n for a continuous than prove that $\{f_n\}$ converges to f in measure.
- 12. Show that $D^{+}[-f(x)] = -D_{+}f(x)$.
- 13. Show that if $a \le c \le b$, then $T_a^b = T_a^c + T_c^b$.
- 14. Prove that **sum** of two absolutely continuous functions is continuous. (14 x 1 = 14 weightage) **Turn over**

Part B

Answer any seven from the following ten questions (15-24). Each question has weightage 2.

- 15. Let \mathbb{Q} be the set of all invertible linear operators on \mathbb{R}^- . Prove that 1 is an open subset of $L(\mathbb{R}^n)$
- 16. Let

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that $(D_i f)(x, y)$ and $(D_x f)(x, y)$ exist at every point of $1R^2$.

17. If E_1 and $\emph{E2}$ are measurable, then prove that

$$m(E_1 \cup E_2) \quad m(E_1 \cap E_2) = m(E_1) \quad m(E_2).$$

- 18. Prove that sum of two measurable functions defined on a same measurable set is measurable.
- 19. Prove that the characteristic function \mathbb{R} is measurable if and only if E is measurable.
- 20. Let E1, E2, , E_n be disjoint measurable sets and let $co = \sum_{i=1}^n a_i \chi_{E_i}$. Prove that $\int \varphi = \sum_{i=1}^n a_i m(E_i).$
- 21. Let E be a measurable set and let f, g be integrable over E. Prove that f + g is integrable over E and

$$\int_{E} f + g = \int_{E} g.$$

22. Let f be a function defined by

$$f(x) = 0$$
 if $x = 0$
$$x \sin(\frac{1}{x})$$
 if $x = 0$

Is f differentiable at x = 0? Justify your answer.

- 23. If f is of bounded variation on [a, b], then prove that f'(x) exists for almost all x in [a, b].
- 24. If f is absolutely continuous on [a, bb then prove that f is of bounded variation on [a,b].

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** from the following **four** questions (25-28).

Each question has weightage

- 25. (a) Let E be an open subset of \mathbb{R}^n and f maps E into m. If f is differentiable at a point $x \to E$, then prove that the partial derivatives $(D_i f_i)(x)$ exist.
 - (b) If [A] and [B] are n by n matrices, then prove that

$$detail[B] = det[A] det[B].$$

- 26. (a) Prove that outer measure of an interval is its length.
 - (b) Let $\{E_i\}$ be a sequence of measurable sets. Prove that

$$m(UE_i) \leq m(E_i)$$

- 27. (a) State and prove bounded convergence theorem.
 - (b) Let $\{f_n\}$ be a sequence of non-negative measurable functions and $f_n(x) f(x)$ almost everywhere on a set E. Prove that

fn
$$\lim_{E} \int_{E} f_{n}$$
.

28. Let f be an increasing real valued function on the interval [a,b]. Prove that f is differentiable almost everywhere, the derivative f' is measurable and

$$f'(x) 5 f(b) - (a).$$

 $(2 \times 4 = 8 \text{ weightage})$