	16	(0
C	40	69

æ.		2
(Page	•	31
(Pages	•)

Reg. No.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 2C 07—REAL ANALYSIS—II

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Short answer questions 1 — 14.

Answer all questions.

Each question has 1

- 1. Prove that a linear operator A on a finite dimensional vector space is one-one if and only if the range of A is X.
- 2. Let 0 be the set of all linear operators on \blacksquare . Let A E ft and B E L(\mathbb{R}^n) with B A .11 \mathbb{A}^{-1} II <1. Prove that B E 11
- 3. Define gradient of a real valued differentiable function f with domain E, at x a E. Also define the directional derivative of f at x. Illustrate with an example.
- 4. Prove that the determinant of the matrix of a linear operator on which is used to construct the matrix.
- 5. If m * (A) = 0, prove that $m * (A \cup B) m * (B)$.
- 6. Define Lebesgue measurable sets. Prove that finite sets are measurable.
- 7. Define measurable functions. Let f be a measurable function and E be a measurable subset of the domain off Prove that f/E is measurable.
- 8. Define Lebesgue integral of a bounded measurable function. If A and 13 are disjoint measurable sets of finite measure prove that SA, f = IA f = 5
- 9. If f and g are bounded measurable functions defined on a set of finite measure, prove that $\int (f 4-g) = f + \int_{\mathbb{R}} g$

Turn over

- 10. If f^{is} integrable over a measurable set E, prove that I f^{I} is integrable over E.
- Give an example of a sequence $\{f_n\}$ that converges in measure but such that $\{f_n(x)\}$ does not converge for any x.
- Prove that a function f is of bounded variation on [a, b] if and only if f is the difference of two monotone real valued functions on [a, b].
- 13. Let f be defined by $f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x & \sin \frac{1}{x} & \text{if } x = 0 \end{cases}$ Find $D^* f(0)$ and $D_* f(0)$.
- 14. If f is absolutely continuous prove that f has a derivative almost everywhere.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions from the following ten questions (15-24). Each question has weightage 2,

- 15. Let X be an n-dimensional vector space. Prove that every basis of X has n vectors.
- 16. If 0 is a contraction of a metric space X, prove that 0 has a unique fixed point.
- 17. Let S be a metric space. Let a_n , a_{12} , are real continuous functions on S. If for each p E S, A. is the linear transformation from into le whose matrix has entries $a_u(p)$, prove that the mapping $p \mapsto A_p$ is a continuous mapping of S into $L(\mathbb{R}^n)$.
- 18. Prove that every borel set is measurable.
- 19. Let $\{E_n\}$ be an infinite sequence of measurable sets with E^{n+} , E_n for each n. Prove that $m\left(\bigcap_{n=1}^{\infty} = \lim_{n\to\infty} m(E_n)\right)$
- 20. Let (f_n) be a sequence of measurable functions with the same domain of definition. Prove that $\lim_{n \to \infty} f_n$ and $\lim_{n \to \infty} f_n$ are measurable.
- 21. Let f be a non-negative integrable function. Prove that F defined by f(x) = f(x) = f(x) is continuous.

- 22. State and prove the Lebesgue convergence theorem.
- 23. Let $\{f_n\}$ be a sequence of measurable functions that converge in measure to f. Prove that there is a subsequence $\{f_n\}$ that converges to f almost everywhere.
- 24. Show that $T_{\alpha}^{\dagger}(g') = 1c I$ (g) and $T_{\alpha}^{\dagger} + g = T_{\alpha}^{\dagger}(f) + T_{\alpha}^{\dagger}(g)$.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions from the following four questions (25 - 28). Each question has - 4.

- 25. Let f be a mapping of an open set E c r into W. Let f(x) is invertible for each $x \in E$. Prove that f(W) is an open subset of R" for every open set W c E.
- 26. Prove that the Lebesgue outer measure of an interval is its length.
- 27. Prove the Monotone convergence theorem.
- 28. Let f be an integrable function on [a, b] and F(x) = F(a) + Jof(t). Prove that F(x) = f(x) for almost all $x \in [a, b]$.

 $(2 \times 4 = 8 \text{ weightage})$