C 83624	(Pages : 3)	Name

Reg. No.....

.......

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics

MT 2C 07-REAL ANALYSIS - II

Time: Three Hours Maximum: 36 Weightage

Part A

Short answer questions.
Answer **all** questions.
Each question has 1

- 1. Let $A \to L(\mathbb{R}, -)$ and $B \to L(\mathbb{R}, \mathbb{R})$. Prove that |BA| = |B| |A|.
- 2. Let X and Y be vector spaces and let A E L (X, Y) be such that for all x E X Ax = 0 implies x = 0. Prove that A is one to one.
- 3. Let $f \mathbb{R}^1 \to \mathbb{R}^1$ be given by $f(x, y, z) = x^3 + y^3 + z^3 + z^2 + y^2 + z^2$. Find the gradient of f at (2, 3, 1).
- 4. State inverse fu ion theorem.
- 6. Let At be a a-algebra and let $[E_j]$ be a sequence of elements in A. Prove that $\bigcap E_j E$
- 7. Prove that if $m^*(A) = 0$, then $m^*(A \cup B) = m^*(B)$.
- 8. Let L. be a sequence of disjoint measurable sets and A be any set. Prove that:

$$m^*\left(\mathbf{A}\cap\mathbf{U}\;\mathbf{E}_i = \mathbf{m}^*\;(\mathbf{A}\cap\mathbf{E}_i).\right)$$

9. Is the characteristic function X (0,1) measurable ? Justify your answer.

Turn over

- 11. Let f be a measurable function. Prove that f and f are measurable. Also prove that $f = f^* f$.
- 12. Let $\{f_n\}$ be a sequence of measurable functions such that $f_n \to f$ in measure. If $f_n \to f$ a.e.?

 Justify your answer.
- 13. For functions f and g, prove that $\mathbf{D}_+ (f + g) \quad \mathbf{D}_+ f + \mathbf{D}_+ g$.
- 14. If f is absolutely continuous on [a, b] and if $f(x) \neq 0$ for all $x \in [a, b]$, then prove that 1 is absolutely continuous on [a, M].

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** from the following ten questions. Each question has weightage 2.

15. Let $f(x, y) = \frac{1}{2} \frac{$

derivative $(\mathbf{D}_{\mathbf{L}}f)(0,\mathbf{0})$ exists.

- 16. Let [A] be the matrix obtained from the matrix [A] by interchanging two columns. Prove that det [A] = det [A].
- 17. Prove that the outer measure is translation invariant.
- 18. Let E be a measurable set and let E>0. Prove that there is an open set 0 DE such that $m^*(0 E) < E$.
- 19. Let $E_1, E_2, \dots E_n$ be a disjoint collection of measurable sets and let $q = a_1 m(E_1)$. If $m (E_s) < \infty$ for

each i, then prove that $\phi = a_i m(\mathbf{E}_i)$.

- 20. Let f = [0, 1] I 1 be given by $f(x) = \frac{0 \text{ if } x \text{ is rational}}{n \text{ if } x \text{ is irrational}}$ where n is the number of zeros immediately after decimal point in the representation of x. Show that f is measurable and evaluate
- 21. Let $[f_n]$ be a sequence of non-negative measurable functions that converge to f and let f_n s f for each n. Prove that $f = \lim_{n \to \infty} f_n$.
- 22. Show that if f is integrable over a measurable set E, then I f When does equality occur? Justify your answer.
- 23. If f is of bounded variation on [a, b], then prove that f'(x) exists for almost all x in [a, b].
- 24. Prove that absolutely continuous functions on [a, b] are of bounded variation on [a, M.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two from the following four questions. Each question has well and 4.

- 25. Let E be an open set and let $f \to \mathbb{R}^m$ be a mapping differentiable at a point $x \to \mathbb{E}$. Prove that the partial derivatives $(D_i n)$ (x) exist and $f'(x) = \sum_{i=1}^{m} (D_j f_i)(x) u_i$ where $1 \neq j = 1$.
- 26. (1) Prove that there exists a non-measurable set.
 - (ii) Prove that Cantor set is of measure zero.
- 27. (i) Prove that for each a E Et, the interval (a, o) is measurable.
 - (ii) Let f and g be non-negative measurable functions defined on a measurable set E. Prove that $\iint_E + g = \iint_E g$.
- 28. (i) Let $\{f_n\}$ be a sequence of measurable functions that converges in measure to f. Prove that there is a subsequence $\{f_n\}$ that converges to f almost everywhere.
 - (ii) Let f be an integrable function on [a, b] and let $F(x) = F(a) + \int_{a}^{b} f(t) dt$. Prove that F'(x) = f(x) for almost all x in [a, b].

 $(2 \times 4 = 8 \text{ weightage})$