C 4668	(Pages : 3)	Name
	(2 ages : 0)	
Reg. No		
SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016		
	(CUCSS)	
Mathematics MT 2C 06—ALGEBRA II		
(2010 Admissions)		
Time : Three Hours	(2010 Admissions)	
Time : Timee Hours	Doub A	Maximum: 36 Weightage
	Part A	
I	Answer all questions. Each question carries weightage	1.
1. Is the ring $z \times z$ an integra	l domain. Justify your answer	
2. Let $p(x)$ be an irreducible polynomial of degree > 1 in $F(x)$ and let $I = \langle p(x) \rangle$. Show that		
$a + I \neq b + I$ for $a \neq b$ in F.		
3. Show that Q Lis ah algebraic extension of Q.		
4, Find the degree $[\mathbf{Q}(\mathbf{a}): \mathbf{Q}]$	where a = #	
5. Find the degree of c over R where c is the field of complex numbers and \mathbb{R} is the field of reals.		
6. Let a be a real number such that [Q (a): Q] = 4. Is a constructible. Justify your answer.		
7. Let a be a zero of $x^2 + x + 1$	$1 \in \mathbb{Z}_2$ [x] and let $F = \mathbb{Z}2$ (a). List	all the elements of F.
8. Let $a: Q(\sqrt{2}) \rightarrow Q$ (5) be d	lefined by a (a + b $b + a f$	where $a, b \in Q$. verify whether a is
an automorphism of Q $(\sqrt{2})$		
9. Let E be the splitting field of x^3-1 over Q. Find [E:Q		
10. Find the index {Q (a): Q} w	here a = 🗔	

11. List the elements of the Galois group G (Q (1 + i) / Q).

Turn over

2 C 4668

- 12. Verify whether $(y_1 1)(y_2 1)(y_3 1)$ is a symmetric function in y_1, y_2, y_3 .
- 13. Describe the third cyclotomic, polynomial Φ_3 (x) over Q.
- 14. Verify whether $x^5 2$ is solvable by radicals over Q.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carrie weighting 2.

- 15. Let N be an ideal in a commutative ring R and let $a \in R$. Show that $I = \{ra + n : r \in R, n \in N\}$ is an ideal of R containing N.
- 16. Let E be an extension of a field F and a E E. Let p(x) be an irreducible polynomial in $\mathbb{F}[x]$ such that p(a) = 0. Show that if $f(x) \in \mathbb{F}[x]$ is such that f(a) = 0 then $p(x) \mathbf{I} f(x)$.
- 17. Let E be an extension of a field F, $a \to E$ and let $: F[x] \to E$ be the evaluation homomorphism. Show that a is transcendental over F if and only if ϕ_{a} is one-to-one.
- 18. Let E be an extension of a field F and let $K = \{a \in E : a \text{ is algebraic over F}\}$. Show that K is a subfield of E.
- 19. Show that every finite extension of a finite field is a simple extension.
- 20. Let E be an extension of a field F and a E E be algebraic over F. Let a be an automorphism of E leaving F fixed. Show that a (a) is a zero of irr (a; F).
- 21. Let K be the splitting field of $x^3 2$ over Q. Find $[K:\mathbb{Q}]$.
- 22. Describe all elements of the Galois group G (K/Q) where K is the splitting field of $x^3 + 2$ over Q.
- 23. Let **H** be a subgroup of a **Galois** group G(K/F). Show that $K_H = \{a \in K : a (a) = a \text{ for all } a \in HI \text{ is a subfield of } K.$
- 24. Show that a regular 7-gon is not constructible by straight edge and compass.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

· Answer any two questions.

Each question carries we shape 4.

- 25. Let F be a field. Show that every ideal in $\mathbf{F}[\mathbf{x}]$ is a principal ideal. Let p(x) be irreducible in $\mathbf{F}[\mathbf{x}]$. Show that $(p(\mathbf{x}))$ is a maximal ideal in $\mathbf{F}[\mathbf{x}]$, Verify whether $\mathbf{x}^3 + \mathbf{x}^2$ 2 is irreducible in Z3 [x].
- 26. Define algebraically closed field. Show that a field F is algebraically closed if and only if every non constant polynomial in $\mathbb{F}[x]$ factors into linear factors in $\mathbb{F}[x]$.
- 27. Define splitting field. Let E, F be fields such that $F \in E \subseteq F$. Show that E is a splitting field over F if and only if every isomorphism from E into F leaving \overline{F} fixed maps E onto E.
- 28. Describe the 8th cyclotomic polynomial $\Phi_{th}(x)$ over Q.. Show that $\Phi_{th}(x) = x^4 + 1$. Describe the. Galois group of $\Phi(x)$ over Q.

 $(2 \times 4 = 8 \text{ weightage})$