Name.....

Reg. No

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

(CUCSS)

Mathematics

MT IC 05—DISCRETE MATHEMATICS

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Questions) (1-14)

Answer all questions.

Each question has 1 weightings.

1. Let (X, and (Y, 2) be partially ordered sets and let $Z = X \times Y$. Define a relation \leq on Z as follows:

$$y_1$$
) < $(x_2, y_2) \Leftrightarrow x_2 \text{ and } y_1 < 2 y_2$.

Prove that < is a partial order on Z.

- 2. Let X be the set of positive integers which divide 30. Define a relation \leq on X by x = y if and only if x I y. Draw the Hasse diagram of this relation.
- 3. Let (X, +, ., .) be a Boolean algebra. Prove that (x')' = x for all $x \in X$.
- 4. Prove that $x_1 x_2 + x_3$ is symmetric with respect to x_1 and x_2 .
- 5. Find the girth of the graph K_5 .
- 6. Define Eulerian graph. Determine the values of m and n such that K is Eulerian.
- 7. If G is a simple graph, then prove that dim G 3 implies dim G _ 3.
- 8. Let G be a graph with connectivity 4. Is G 2-connected 7 Justify your answer.
- 9. Prove that K_{3,3} cannot be drawn without crossing.
- 10. Let $l(F_1)$ denotes the length of face F_1 in a plane graph G, then prove that $2e(G) = \sum l(F_1)$, where e(G) is the number of edges in G.

Turn over

- 11. Find a grammar for $\longrightarrow = \{a, b\}$ that generates the set of all strings with exactly one a.
- 12. Define a regular language and give an example of it.
- 13. Show that if L is regular, then so is $L = \{X\}$.
- 14. Find the set of strings accepted by the following deterministic acceptor.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven from the following ten questions (15-24).

Each question has 2.

- 15. Let (X, +, .,) be a finite Boolean algebra. Prove that every element of X can be uniquely expressed as a sum of atoms.
- 16. Prove that in a distributive, bounded lattice, the complements are unique, whenever they exist.
- 17. Prove that every u, v -walk contains a u, v -path.
- 18. Prove that the number of odd degree vertices in a given graph is even.
- 19. Prove that an edge is a cut edge if and only if it belongs to no cycle.
- 20. Prove that a tree with n vertices has n 1 edges.
- 21. If G is a simple graph, then prove that

$$k(G)$$
 $(G) \leq \delta(G)$.

22. Let G be a simple planar graph with at least three vertices. If G is triangle-free, then prove that $e(G) \cdot f(G) = 4$, where e(G) and e(G) denote the number of edges and vertices in G respectively.

3

- 23. Find a grammar that generates the language fan $b^{en}: n > 0$.
- 24. Let $E = \{a, b, c\}$. Construct a deterministic finite acceptor that accepts that language b.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two from the following four questions (25-28). Each question has weighting 4.

- 25. (a) Prove that every finite Boolean algebra is isomorphic to a powerset Boolean algebra.
 - (b) Write the Boolean function

$$f(x_1, x_2, x_3) = (x_1 + x_1 + x_2 + x_3) + x_1 + x_2 + x_3$$

in their disjunctive normal form.

- 26. Prove that the complete graph $\mathbb{K}_{\mathbb{R}}$ can be expressed as the union of k bipartite graphs if and only if $n \le 2^k$.
- 27. (a) Prove that every connected graph contains a spanning tree.
 - (b) If a connected plane graph G has exactly n vertices, e edges and f faces, then prove that n e + f = 2.
- 28. (a) Let $(Q, E, 6, q_u, F)$ be a deterministic finite acceptor accepting the language L. Prove that (Q, E, 6, go, Q F) accepts the language E L.
 - (b) Let G_M be the transition graph of some deterministic finite acceptor M. If L(M) is infinite, then prove that G_M must have at least one cycle for which there is a path from the initial vertex to some vertex in the cycle.

 $(2 \times 4 = 8 \text{ weightage}).$