D	1	3	1	8	2

(Pages : 3) Name.....

Reg. **No.....**

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 1C 01—ALGEBRA—I

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer **all** questions.

Each question carries weightage 1.

- 1. Verify whether the map (x, y) H(x + 1, y) is an isometry of the plane which maps the X-axis to X-axis.
- 2. Verify whether the direct product $Z_{2} \times Z_{4}$ is isomorphic to Z_{8} .
 - Find the order of the element (2, 3) in Z_{3X7Z_6} .
- 4. For binary codes u, v of same length prove that if d(u, v) = 0 then u = v.
- 5. List the elements of the quotient group $Z_{6/H}$ where H is the subgroup generated by 2.
- 6. Give a composition series which is a refinement of (0) s < 3 > 5 Z_{12} .
- 7. Let H be a subgroup of a group G and G be an H— set defined by h * g = hg. Find the orbit of g where g is an element of G and g H.
- 8. Find the number of sylow 5-subgroups of a group of order 15.
- 9. If $w = a_1 a_2^2 a_3^1$ and $v = a_3 a_2^{-1} a_1$ find the reduced word corresponding to we.
- 10. List all the elements of the group whose presentation is (x, y : x) = xy, xy = xy.
 - 11. Verify whether x 1 is a factor of $2x 3x^2 + 1$ in **Q** [x].

Turn over

2 D 13182

- 12. Verify whether $x^5 + 3x^3 + 6x + 3$ is irreducible in Q [x].
- 13. Find the multiplicative inverse of 2i + j + k in the skew field of quaternions.
- 14. Verify whether the ring of all 2 x 2 matrices over—is a field.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions.

Each question carries weightage 2.

- 15. Prove that $Z_3 \times 7L_5$ is isomorphic to 76_{15} .
- 16. Prove that if m divides the order of a finite abelian group G then G has a subgroup of order m.
- 17. Let H be a normal subgroup of a group G and : G G/H be defined by $_{4)}(x) = xH$. Show that $\ker \phi = H$.
- 18. Let $G = H \times K$ be a direct product of groups. Let $K = \{(e, k): k \in K.\}$ Show that G isomorphic to H.
- 19. Let X be a G-set. Let \sim be a relation on X defined by x y if y = gx for some $g \in G$. Show that is an equivalence relation on X.
- 20. Let H and K be normal subgroups of a group G such that K c H. Show that Gill is isomorphic to (G/K)/(H/K).
- 21. Prove that every group of order 81 is solvable.
- 22. Let $\mathbb{F}[x]$ be ring of polynomials over a field \mathbb{F} . Let $\phi: \mathbb{F}(x) \to \mathbb{F}$ be defined by $a_0 + a_1x + \dots + a_nx^n \mapsto a_0$. Show that 4) is a homomorphism of rings.
- 23. Show that $x^3 = 2$ has no solutions in rational numbers.
- 24. Show that quaternion multiplication is not commutative.

 $(7 \times 2 = 14 \text{ weightage})$

3 D 13182

Part C

Answer any **two** questions.

Each question carries weightage 4.

- 25. Define direct product of two groups G_1 and G_2 . Prove that if a E G1 is of order m and $b \to G2$ is of order n then order of $(a, b) = G_1 \times G2$ is the lem of m and n.
- 26. Let X be a G-set. For each $g \to G$ let $G \to X \to X$ be defined be $X \to G \to X$. Prove that $G \to X \to X$ permutation on X.
- 27. Define **Sylow** p-subgroups of a group G. Show that any two **Sylow** p-subgroups of a group G are conjugates.
- 28. Show that the set of all quaternions form a skew field, but not a field.

 $(2 \times 4 = 8 \text{ weightage})$