Name

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 1C 03-REAL ANALYSIS-I

(2016 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Questions)

Answer all questions.

Each question has weighted 1.

- 1. Let X be a metric space. Define neighbourhood of $p \in X$ and prove that it is an open set.
- 2. Construct a bounded set of real numbers with exactly two limit points.
- 3. Let $E = \{p \in Q : 2 < p^2 < 3\}$. Show that E is closed and bounded in Q. Is E compact.
- 4. Let $f:[0, 2n) \rightarrow \{(\cos t, \sin t): t \in [0, 2\pi)\}$ be defined by $f(t) = (\cos t, \sin t)$. Verify whether f is a homeomorphism.
- 5. Identify the type of discontinuity at rational points $x = \frac{1}{n}$ (where m and n are integers without

any common divisors) of the function f defined by $f(x) = \begin{cases} 1_{\text{if } x} & \text{m} \\ n & \text{n} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$

- 6. Let f be defined on [0, 2] by f(x) = x. If f uniformly continuous. Justify your answer.
- 7. If f is a real differentiable function defined on [a, b] and f'(a) < c < f'(b), prove that there is a point $x \in (a, b)$ such that f'(x) = c.
- 8. Prove that $\lim_{x \to 0} \sin x = 0$.

Turn over

- 9. Explain whether the Mean Value theorem is applicable to $f(x) = 2 + (x 1)^3$ in [0, 2].
- 10. If f is bounded on [a, b], f is continuous at s where a < s < b and a(x) = I(x s) where I is the unit step function defined by I(x) = 0 if x = 0 and I(x) = 1 if x > 0, then prove that $\int_{a}^{a} f da = f(s)$.
- 11. If f is continuous on [a, b] and a has a continuous derivative on [a, b] then prove that $\int_{a}^{b} f da = \int_{a}^{a} f a' dx$
- 12. Define a rectifiable curve. Give an example of a rectifiable curve.
- 13. Let $\{f_n\}$ be a sequence of functions differentiable on [a, b] such that $\{f_n\}$ converges for some point \mathbf{x}_0 on [a, b]. If $\{f_n\}$ converges uniformly on [a, b], prove that $\{f_n\}$ converges uniformly on [a, b].
- 14. Define equicontinuous family of functions. State a sufficient condition for a family $\{f_n\}$ of continuous functions defined on a compact metric space K to be equicontinuous on K.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions from the following ten questions. Each question has weighting 2.

- 15. Prove that the interior of a set S is the largest open subset of S.
- 16. Define a compact set. Explain with details why S = (0, 1) is not compact.
- 17. If F is closed and K is compact prove that F n **K** is compact.
- 18. If $f: X \rightarrow Y$ is continuous where X is a compact metric space and Y is a metric space, prove that f is uniformly continuous on X.
- 19. Prove that monotonic functions have no discontinuities of the second kind.
- 20. State Taylors theorem. Illustrate with an example.
- 21. If f is bounded in [a, b], f has only finitely many points of discontinuities on [a, b] and a is continuous at every point at which f is discontinuous, prove that $f \in \mathbb{R}$ (a) on [a, b].

- 22. If f is Riemann integrable on [a, b] and if there exists a differentiable function F such that F' = f, prove that $\int_{a}^{b} f(x) dx = F(b) F(a)$.
- 23. If $\{f_n\}$ is a sequence of continuous functions defined on E in a metric space and if f_n \mathcal{F} uniformly on E prove that f is continuous on E.
- 24. If $f_n = f$ uniformly on [a, b], $f_n \in \mathbb{R}$ (a) on [a, b] where a is monotonically increasing on [a, b], prove that $f \in \mathbb{R}$ (a) on [a, b] and $\int_0^a f da = \lim_{n \in W} \int_0^n f_n da$.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions from the following four questions. Each question has well have 4.

- 25. (a) Let X be a compact set in R and A c X be closed. Prove that A is compact.
 - (b) Let X and Y be metric spaces. Prove that $f: X \to Y$ is continuous if and only if f^{-1} (C) is closed in X for every closed set C in Y.
- 26. Let a increases monotonically and a'E on [a, b]. If f is a bounded real function on [a, b] prove that $f \in \mathbb{R}$ (a) on [a, b] if and only if $fa' \in \mathbb{R}$. Also prove that $\int_a^b f(x) \, dx$.
- 27. Prove that there exists a real continuous function on the real line which is nowhere differentiable.
- 28. State and prove the Stone-Weierstrass theorem.

 $(2 \times 4 = 8 \text{ weightage})$