D 13184

(Pages : 3) Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 10 03—REAL ANALYSIS--I

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Questions)

Answer **all** questions.

Each question has 1 weightage.

- 1. Define convex set. Give an example of a non-convex set in R2
- 2. For $x, y \in \mathbb{R}^1$, let d(x, y) = [x 2y]. Is d = a metric on \mathbb{R}^1 ? Justify your answer.
- 3. Is arbitrary intersection of closed sets closed 7 Justify your answer.
- 4. Let E be an infinite subset of a compact set K. Prove that E has a limit point in K.
- 5. Let f be a real uniformly continuous function on a bounded set E in R¹. Prove that f is bounded on E.
- 6. Let f and g be differentiable functions on (a, b). Prove that f is differentiable on (a, b) and (fg)'(x) = f'(x) g'(x) + f(x) g'(x) for all $x \in (a, b)$.
- 7. Evaluate \log_{r}
- 8. Let a be an increasing function on [a, b], a = 5, a = 5, a be a continuous at a = 5, a = 5, and a = 5, and
- 9. If $f_1 \to R$ (a) and $f_2 \to R$ (a) on [a, b], then prove that $f_1 + f_2 \to R$ (a) on [a, b] and $\int_{a}^{b} (f_1 + f_2) da = \int_{a}^{b} da + \int_{a}^{b} 12 da$

Turn over

2 D 13184

- 10. Let y be a curve in the complex plane, defined on $[0, 2\pi]$ by $y(t) = e^{-t}$. Find the length of y.
- 11. For n = 1, 2, 3,... and for real x, let $I_n(x) =$ Show that $I_n(x)$ is uniformly convergent.
- 12. Let $\{f_n\}$ be a sequence of real valued differentiable functions that converges to f. Is it true that f^n f^n ? Justify your answer.
- 13. Define equicontinuity. Prove that functions in an equicontinuous family are continuous.
- 14. State Stone-Weierstrass theorem.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** from the following ten questions. Each question has weightage 2.

- 15. Prove that every infinite subset of a countable set A is countable.
- 16. Let X be a set. For p, $q \in X$, define :

$$d(p, = \begin{cases} 1 & \text{if } p \neq q \\ 0 & \text{if } p \end{cases}$$

Prove that *d* is a metric on X. Which subsets of the resulting metric space are open.

- 17. Let E be a closed set of real numbers which is bounded above. If y is the least upper bound of E, then prove that $y \in E$.
- 18. Let [x] be the largest integer less than or equal to x. What type of discontinuities does the function [x] have ?
- 19. Let f be a function defined on [a, b]. If f has a local maximum at a point $x \in (a, b)$ and if f'(x) exists, then prove that f'(x) = 0.
- 20. If f is differentiable on [a, b], then prove that f' cannot have any simple discontinuities on [a, b].
- 21. Let f be a bounded real function on [a, b] and a be monotonically increasing on [a, M]. If P' is a refinement of the partition P, then prove that :

L (P,
$$f$$
, a) **L** (**P**', f , a).

- 22. Let $f \in \mathbb{R}$ (a) on [a, b]. Prove that $|f| \in \mathbb{R}$ (a) on [a, b] and $|\int_a^b f da| = \int_a^b |f| da$.
- 23. Prove that the series:

$$-1) n = 1$$

converges uniformly in every bounded interval.

24. For $n = 1, 2, ..., let <math>f_n(x) = \frac{x^n}{x^2 + (1 - nx)^2}$ Show that $\{f_n\}$ is uniformly bounded on [0, 1]. Also

prove that $\{f_{i,j}\}$ is not equivantinuous on [0,1].

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two from the following four questions.

Each question has weighting 4.

- 25. (a) Prove that a set E is open if only if its complement is closed.
 - (b) Prove that compact subsets of a metric space are closed.
- 26. State and prove Taylor's theorem.
- 27. (a) Let f be a bounded function on [a, M]. Prove that f **ER** (a) if and only if for every E > 0 there exists a partition P of [a, b] such that :

$$U(P, f, a) - L(P, f, a) < .$$

- (b) Let f be a bounded function and a be a monotonic increasing function on [a, b]. If f_1 , f_2 are Riemann-Stieltjes integrable with respect to a on [a, b], then prove that $f_1 + f_2$ is Riemann-Stieltjes integrable with respect to a on [a, b].
- 28. Let $\{f_n\}$ be a sequence of continuous functions on a set E such that f_n \mathcal{I} uniformly on E. Prove that f is continuous on E.

 $(2 \times 4 = 8 \text{ weightage})$