Name

Reg. No....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

(CUCSS)

Mathematics

MAT 10 03-REAL ANALYSIS-I

(2010 Admissions)

Time: Three Hours ————

Maximum: 36 Weightage

Part A (Short Answer Questions (1-14)

Answer all questions.

Each question has 1 weightings.

- 1. Prove that every neighborhood is an open set.
- 2. In closure of a connected set connected 7 Justify your answer.
- 3. Prove that a closed subset of a compact space is compact.
- 4. Let E be an infinite subset of a compact set K. Prove that E has a limit point in K.
- 5. Prove that the composition of two continuous functions is continuous.
- 6. Explain discontinuities of first and second kinds.
- 7. Let $f(x) = x^{-1}$. Evaluate f''(x) for all real x.
- 8. Let a be increasing on [a, b] and continuous at $x_0 \in (a, b)$. If $f(x_0) = 1$ and f(x) = 0 for $x \neq x_0$, then prove that $\int_0^b f d\alpha = 0$.
- 9. Let f_1 , f_2 be bounded functions and a be monotonic increasing function on [a, b]. Prove that if f_1 , f_2 are Reimann-Steiltjes integrable with respect to a on [a, 1)] and f_1 f_2 (x) on [a, b], then prove that $\int_{-1}^{10} f_1 dx$ $\int_{-10}^{10} f_2 dx$.
- 10. Let f be Reimann integrable on [a, b] and for $\alpha \propto \text{let F (x)} \qquad f(t) dt$. Prove that F is continuous on [a, b].
- 11. Let $y [0, 1] \rightarrow \mathbb{R}^{-}$ be given by $y(x) = (2x, x^2 + 1)$. Prove that y is rectifiable.
- 12. If $\{f_n\}$ and $\{g_n\}$ converge uniformly E, then prove that $\{f_n + g_n\}$ coverge uniformly on E.

Turn over

2 D 52973

- 13. Define equicontinuous family on functions and give an example of it.
- 14. Does a uniformly bounded sequence has a uniformly convergent subsequence? Justify your answer.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** from the following ten questions. (15 - 24) Each question has **2.**

- 15. Prove that countable union of countable sets is countable.
- 16. Prove that continuous image of a compact set is compact.
- 17. Let I = [0, 1] be a closed unit interval and let f be continuous mapping of I into I. Prove that f(x) = x for atlant one $x \in I$.
- 18. Let [x] denote the largest integer less than *or* equal to x and let (x) = x [x]. What type of discontinuities does the function (x) have ?
- 19. Let f be defined on [a, b]. If f has a local maximum at a point $x \in (a, b)$ and if f'(x) exists, then prove that f'(x) = 0.
- 20. Show by an example that the L' Hospital rule need not true for vector valued functions.
- 21. For 1 < s < 00, define $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n!}$. Prove that $\zeta(s) = s$ where [x] denote the greatest integer less than or equal to x.
- 22. Let f be a bounded function and a be a monotonic increasing function on [a, b]. Prove that if f is Reimann-Steiltjes integrable with respect to a on [a, b], then |f| is Reimann-Steiltjes integrable with respect to a on [a, b] and $|\int_a^b d \, da| \int_a^b |f| da$.
- 23. Let K be a compact metric space and let $f_n \to C$ (K) for $n = 1, 2, 3, \ldots$ If f_n converges uniformly on K, then prove that $\{f_n \text{ is equicontinuous on K}.$
- 24. For n = 1, 2... and x real let $In(x) = \frac{x}{1 + nx^2}$. Show that $\{f_{i,j}\}$ converges uniformly.

 $(7 \times 2 = 14 \text{ weightage})$

3 D 52973

Part C

Answer any two from the following four question (25-28) Each question has weightage 4.

- 25. (a) Let E be a non-compact set in Prove that there exists a continuous function on E which is not bounded.
 - (b) Prove that monotonic functions have no discontinuities of the second kind.
- 26. Let f be a continuous mapping of compact metric space X into a metric space Y. Prove that f is uniformly continuous on X.
- 27. (a) If f is differentiable on [a, b], then prove that f' cannot have any simple discontinuity on [a, b].
 - (b) Let f be a bounded function and a be a monotonic increasing function on [a, b]. Prove that is Reimann-Stelltjes integrable with respect to a on [a, b] if any only if for every e > 0 there exists a partition P of [a, b] such that U (P, f, a) L (P, f, a) < s.
- 28. (a) Prove that there exists a real continuous function on the real which is nowhere differentiable.
 - (b) State Stone-Weirstrass Theorem.

 $(2 \times 4 = 8 \text{ weightage})$