D 33333 (Pa	ges 3)
--------------------	--------

Naı	ne	
-	D.T.	

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, FEBRUARY 2013

(CUCSS)

Mathematics

MAT 1C 03-REAL ANALYSIS-I

(2010 Admissions)

Time: Three Hours Maximum. 36 Weightage

Part A (Short Answer Questions) (1 -14)

Answer **all** questions.

Each question has 1 weightage.

- 1. Construct bounded set of real numbers with exactly one limit point.
- 2. For x, $y \in \mathbb{R}^1$ let $d(x, y) = 1x^2 y^2$. Is d a metric on R ? Justify your answer.
- 3. Let E be a non-empty set of real numbers which is bounded above and let $y = \sup E$. Prove that $y \to E$.
- 4. Is a finite set closed ? Justify your answer.
- 5. Prove that the limit of a function is unique.
- 6. Construct a function which has a simple discontinuity at every rational point.
- 7. Let f be a differentiable function on [a, b]. Prove that f is continuous on [a, b].
- 8. Let f be a continuous function and f = 0 on [a, b]. If f = 0, then prove that f(x) = 0 for all

 $\mathbf{X} \mathbf{E} [a, b].$

- **9.** Let f_p f_2 be bounded functions and a be a monotonic increasing function on [a, b]. Prove that if f_2 are Reimann-Stelltjes integrable with respect to a on [a, b], then $f_1 + f_2$ is Reimann-Stelltjes integrable with respect to a on [a, b].
- 10. Let f be a bounded function and a be a monotonic increasing function on [a, b]. If the partition P' is a refinement of the partition P of [a, b], then prove that.

$$L(\mathbf{l}, f, \mathbf{L}(\mathbf{P}', f, \mathbf{a}).$$

11. Let γ be defined on $[0, 2\pi]$ by $\gamma(t) = 2^{-1}$. Prove that γ is rectifiable.

Turn over

- 12. Give an example of a convergent series of continuous functions with a discontinuous limit.
- 13. Prove that uniformly convergent sequence of bonded functions is uniformly bounded.
- 14. Define equicontinuous family of functions and give an example of it.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** from the following ten questions (15—24). Each question has weighted 2.

- 15. Prove that the set of all integers is countable.
- 16. Prove that compact subsets of a metric space are closed.
- 17. Let f be a continuous real valued function on a metric space X. Prove that the set $Z(f) = \{x \in X \mid f(x) = 0\}$ is a closed subset of X.
- 18. Let [x] denote the largest integer less than or equal to x. What type of discontinuities does the function [x] have \mathbb{T}
- 19. If f is a real valued differentiable function on (a, b). If f'(x) = 0 for all $x \in (a, b)$, then prove that f is monotonic increasing on (a, b).
- 20. Let f be a bounded function and a be a monotonic increasing function on [a, b]. Prove that if f is Reimann-Steiltjes integrable with respect to a on [a, b], then |f| is Reimann-Steiltjes integrable

with respect to a on [a, b] and
$$\int_a^b f d\alpha \int_a^b \int_a^b f d\alpha$$
.

- 21. For $1 \le s \le \infty$, define $\zeta(s) = Y$ Prove that (s) = S x [x] where [x] denote the greatest integer less than or equal to x.
- 22. For what values of x does the series $\frac{1}{1 \pm n^2 x}$ converge absolutely.
- 23. Prove that the series $\sum_{n=1}^{\infty} (1-1)^{-n} \frac{x^{\frac{n}{2}}}{n}$ converges uniformly in every bounded interval.

D 33333

24. Let K be compact, $f_n \to C(K)$ n = 1, 2, 3, ... and let $\{f_n\}$ be pointwise bounded and equicontinuous on K. Prove that $\{f_n\}$ is uniformly bounded on K.

3

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** from the following four questions (25—28). Each question has weightage 4.

- 25. (a) Prove that countable union of countable sets is countable.
 - (b) Prove that the cantor set is perfect.
- 26. (a) Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if f (V) is open in X for every open set V in Y.
 - (b) Prove that continuous image of a connected space is connected.
- 27. (a) State Taylor's theorem.
 - (b) Let f be a bounded function, a be monotonic increasing function and a' is Reimann integrable on [a, b]. Prove that f is Reimann-Stelltjes integrable with respect to a on [a, b] if and only if f a' is Reimann integrable on [a, b].
- 28. Let 'y be a curve on [a, b] and let y' be continuous on [a, M]. Prove that γ is rectifiable and

$$(\gamma) = |\mathbf{y}'(t)| dt.$$

 $(2 \times 4 = 8 \text{ weightage})$