FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 1C 04-ODE AND CALCULUS OF VARIATIONS

Time: Three Hours Maximum: 36 Weightage

Part A

Answer **all** questions.

Each question carries 1 weightage.

- 1. Find a power series solution of the form $\sum a_n x$ of the differential equation y' + y = 1.
- 2: Determine the nature of the point x = -1 for the equation $x^2 (x^2 1)^2 y'' 2 (x 1) y' + 3xy = 0$.
- 3. Find the indicial equation and its roots of the equation $x^3 + (\cos 2x 1) + 2xy = .$
- 4. Find the general solution of the equation $(2x^2 + 2x)y'' + (1 + 5x)y' + y = 0$ near the singular point x = 0.
- 5. Find the first two terms of the Legendre series of the function

$$f(x) = \begin{cases} 0 & \text{if } -15_x < 0 \\ x & \text{if } 0 \le x \le 1 \end{cases}$$

- 6. Prove that for an integer m = 0, $I_{m}(x)$ and $I_{m}(x)$ are linearly dependent.
- 7.. Prove that $\frac{d}{dx}$ J $[x] = x^p J_{p-1}(x)$.
- 8. Describe the phase portrait of the system $\frac{dx}{dt} = -x$, $\frac{dy}{dt} = -y$.
- 9. Find the critical points of the non-linear system:

$$\frac{dx}{dt} = -x, \quad \frac{dy}{dt} = 2x^2 y^2.$$

10. Show that (0, 0) is an asymptotically stable critical point of the system:

$$\frac{dx}{dt}$$
 $\frac{3x3}{y}$ $\frac{dy}{dt}$ $x^3 - 2y^3$

- 11. Find the normal form of Bessel's equation $(x^2 + (x^2 + p^2))^{\vee}$ o.
- 12. State sturm comparison theorem.
- 13. Show that f(x, y) = xy satisfies a Lipschitz condition on any rectangle $a \le x \le b$ and $c \le y \le d$.
- 14. Find the extremal for the integral $\int_{0}^{\infty} y^{2} dx$

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries 2 weightage.

- 15. Find the series solution y (x) of the differential equation y'' + -xy' = 0 satisfying the condition y''(0) = 0, y''(0) = 1.
- 16. Find the only Frobenius series solution of the equation $x^2 3xy' + (4x + 4)y = 0$.
- 17. Determine all the regular singular points of the hyper geometric equation x(1-x)y'' + [c (a+b+1)x] aby = 0.
- 18. Show that if $p_n(x)$ is defined by $p_n(x)$ in n = 1, then $p_n(x)$ satisfies the Legendre's equation $(1-x^2)^n 2xy^n + n(n+1)y = 0$, where n is a non-negative integer.
- 19. Show that between any *two* positive zeros of $J_o(x)$ there is a zero of $J_o(x)$ and that between any *two* positive zeros of $J_o(x)$ there is a zero of $J_o(x)$.

where the \mathbb{L} 's are the positive zeros of J_0 (x).

21. Determine the nature and stability properties of the critical point (0, 0) for the system :

$$\frac{d}{dt} = 4x - 2y, \frac{d}{dt} = 5x + 2y.$$

- 22. Show that if q(x) < 0, and u(x) is a nontrivial solution of +q(x)u = 0, then u(x) has at most one zero.
- 23. Using the method of Lagrange multipliers, show that the triangle with greatest area A for a given perimeter is equilateral.
- 24. Find the exact solution of the initial value problem y' = 2x (1 + y), y(0) = 0. Starting with $y_{1}(x) = 0$, apply Picard's method to calculate $y_{1}(x)$, $y_{2}(x)$, $y_{3}(x)$ and compare these results with the exact solution.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries 4 weightings.

- 25. Discuss the general solution of the huper geometric equation x(1-x)y'' + [c (a+b+1)x]y' aby = 0 near the singular point x = 0.
- 26. State and prove the orthogonality property of the Legendre polynomials.
- 27. Find the general solution of the system:

$$\frac{dx}{dt} = 7x + 6y, \frac{dx}{dt} - 2x + 6y.$$

28. Obtain Euler's differential equation for an extremal.

 $(2 \times 4 = 8 \text{ weightage})$