(Pages:3)

Name

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, FEBRUARY 2013

(CUCSS)

Mathematics

MT 1C 04-ODE AND CALCULUS OF VARIATIONS

(2010 admissions)

Time: Three Hours

Maximum : 36 Weightage

Part A

Answer **all** questions. Each question carries 1 weightage.

- 1. Define radius of convergence of a power series $\sum a_n x^n$.
- 2. Determine the nature of the point x = 1 for the equation :

$$\mathbf{X}^{2} (\mathbf{X} \mathbf{2}^{-1)2} \mathbf{y}'' - \mathbf{x} (1 - \mathbf{x}) \mathbf{y} + 2\mathbf{y} = 0.$$

3. Find the indicial equation and its roots of the equation :

$$4x^{2}y'' + (2x^{4} - 5x)y' + (3x^{2} + 2)y = 0.$$

- 4. Evaluate: $x \lim_{x \to \infty} F a, a, \frac{3}{2}, \frac{-x^2}{4a^2}$
- 5. Show that $p_{1} = 0$, where $p_{1}(x)$ is the Legendre polynomial of degree n.
- 6. Define gamma function and show that p+1 = pp
- 7. Show that $\mathbf{J}_{\frac{1}{2}}(\mathbf{x}) = \left|\frac{2}{\pi \mathbf{x}} \cdot \sin \mathbf{x}\right|$.

8. Describe the phase portrait of the system : $\frac{dt}{dt} = 1, \frac{du}{dt} = 2$

9. Find the critical points of the non-linear system :

$$\frac{dx}{dt} \quad \mathcal{Y}(\mathbf{x}^{\mathbf{x}_{2}}+\mathbf{1}), \quad \frac{d_{\cdot}^{\mathbf{x}_{1}}}{dt} = 2xy^{2}.$$

10. Show that a function of the form ax + bx y + cxy + dy cannot be either positive definite or negative definite.

Turn over

II 33334

- 11. Find the normal form of Bessel's equation $x^2y + xy + (x^2 p)y = 0$, where p is a non-negative constant.
- 12. State **sturm** comparison theorem.
- 13. Show that $f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^2 \mathbf{I} \mathbf{y} \mathbf{I}$ satisfies a Lipschitz condition on the rectangle I x I **1** and $|\mathbf{y}|$ **1**.
- 14. Find the stationary function of $\sqrt[4]{YT}$ $\sqrt[dx]{WT}$ which is determined by the boundary conditions y(0) = 0 and y(4) = 3.

(14 x 1 = 14 weightage)

Part B

Answer any **seven** questions. Each question carries 2 weightage.

15. Show that $\tan x = x + \frac{1}{3}x + \frac{2}{15}x + \dots$ by solving $y = 1 + y^2 + y (0) = 0$ in two ways.

16. Determine all the regular singular points of the hypergeometric equation :

$$x(1-x)y'' + [c-(a+b+1)x] - aby = 0$$

17. Let f(x) be a function defined on the interval $-1 \le x \le 1$ and $I = \int_{1}^{1} \left[f(x) \quad p(x) \right]^2 dx$, where p(x)

is a polynomial of degree n. Show that I is minimum when p(x) is precisely the sum of the first (n + 1) terms of the Legendre series of f(x).

- 18. Obtain \mathbf{J}_{μ} (x), the **Bessel** function of first kind.
- 19. Prove that the positive zeros of $J_{\mu}(x)$ and $J_{\mu}(x)$ occur alternately, in the sense that between each pair of consecutive positive zeros of either there is exactly one zero of the other.
- 20. Determine the nature and stability properties of the critical point (0, 0) for the system :

$$\frac{dx}{dt} = 3x + 4y; \frac{du}{dt} = -2x + 3y$$

21. Show that if there exists a **Liopunov** function E(x, y) for the system :

$$\frac{dx}{dt} = F(x, y); \frac{dy}{dt} = G(x, y) \text{ then the critical point (0, 0) is stable.}$$

22. Let $\mathbf{u}(x)$ be any non-trivial solution of $\mathbf{u}^{*} + q(x) \mathbf{u} = \mathbf{0}$, where q(x) > 0 for all x > 0. Show that if

q(x) dx = ∞ , then u (x) has infinitely many zeros on the positive x-axis.

23. Show that the eigen functions of the boundary. value problem $dx \left[p(x) \frac{dy}{dx} + 2q(x)y = 0 \right];$

y(a) = y(b) = 0 satisfy the relation $\int q y_n(x) y_n(x) dx = q_s m \neq n$.

24. A curve in the first quadrant joins (0, **0**) and (**1**, **0**) and has a given area beneath it. Show that the shortest such curve is an arc of a circle.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries **4** weightage.

- 25. Find two independent **Frobenius** series solutions of the equation xy'' + 2y + xy = 0.
- 26. Derive **Rodrigue's** formula for the **Legendre** polynomials and use it to find $P_0(x)$, $P_{\mu}(x)$, $P_2(x)$ and $P_3(x)$.
- 27. Find the general solution of the system : $\frac{dx}{dt} = 5x + 4y$; $\frac{du}{dt} = -x + y$
- 28. Explain Picard's method of successive approximations to solve the initial value problem = f(x, y) || y (x₀) = y₀, where f(x, y) is an arbitrary function defined and continuous in some neighbourhood of the point (x₁ y₀). Use this method to calculate y₁ (x), y₂ (x), y₃ (x) starting with y₀ (x) = 0 for the initial value problem y' = 2x (1 + y), y (0) = 0.

 $(2 \times 4 = 8 \text{ weightage})$