RA NO

D 72885 (Pages : 3) Name.....

Reg. No....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014 (CUCSS)

Mathematics

MT 1C 01—ALGEBRA - I

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Define the group of symmetries of a subset S of R^2 in R^2 and give an example of it.
- 2. Find the subgroups generated by {4,6} in
- 3. Find all subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$ that are isomorphic to the Klein 4-group.
- 4. Let u = 11010101111 and v = 0111001110. Find u + v and wt (u v).
- 5. Find all abelian groups, upto isomorphism of order 16.
- 6. Let X be a G-set for x_1 , $x_2 \in X$, let $x_1 x_2$ if there exists $g \in G$ such that $gx_1 = x_2$. Show that \sim is a symmetric relation on X.
- 7. Find all Sylow 3-subgroups of S4.
- 8. Show that the center of a group of order 8 is non-trivial.
- 9. Find the reduced form and the inverse of the reduced form of the word $a^2a^{-3}b^3a^4c^4c^2a^{-1}$.
- 10. Define the evaluation homomorphism.
- 11. Find all generators of the cyclic multiplicative group of units of the field Z7-
- 12. Let Q be the skew field of quaternions. Write the element (i+j) in the form $a_1 + a_2 i + a_3 j + a_4 k$ for $a_1 \in \mathbb{R}$.
- 13. Find all zeros of $x^3 + 2x + 2$ in \mathbb{Z}_7 .
- 14. Find all ideals N of Z_{12} .

 $(14 \times 1 = 14 \text{ weightage})$

Turn over

Part B

2

Answer any seven questions.

Each question carries 2 weightage.

- 15. Find the order of the element (2,0) + ((4,4)) in $\mathbb{Z}_6 \times \mathbb{Z}_8$ (4,4))
- 16. Show that a subgroup M of a group G is a maximal normal subgroup of G iff G is simple
- 17. Give isomorphic refinements of the two series :

$$\{0\} \le 60Z \le 20Z \le Z \text{ and } \{0\} \le 245Z \le 49Z \le Z$$
.

- 18. Show that if $H_o = \{e\} < H_1 < H_2 < \dots < H_n = G$ is a subnormal series for a group G, and if $H_i + 1$ is of finite order $S_i + 1$. Then G is of finite order S_i , S_2 , \dots S_n .
- 19. Let G be a finite group and X a finite G-set. Show that if r is the number of orbits in X under G, then:

$$r G = \sum_{g \in G} I X_{g}$$

- 20. Show that for a prime number p, every group G of order p^2 is abelian.
- 21. Show that there are no simple groups of order 255.
- 22. Show that $(a,b): a^3 = 1, b^2 = 1, ba = a^2b$ gives a non-abelian group of order 6.
- 23. Demonstrate that $x^4 22x^2 + 1$ is irreducible over Q.
- Give the addition and multiplicative tables for the group algebra $\mathbb{Z}_{\mathbf{a}}(G)$, where $G = \{a, b\}$ is cyclic of order 2.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries 4 weightage.

25. Show that the group $\mathbb{Z}_{m} \times \mathbb{Z}_{m}$ is isomorphic to \mathbb{Z}_{mm} iff m and n relative prime. Deduce that if χ is any integer written as $n = (p_1^m (p_2)^m)^2$, where p_i 's are distinct primes then \mathbb{Z}_{m} is isomorphic to $\mathbb{Z}_{m} \times \mathbb{Z}_{m} \times \mathbb{Z}_{m$

26. Let H be a subgroup of a group G. Prove that the following conditions are equivalent:

ghg EH for all gEG and hEH.

$$gH = H_g$$
 for all $g \in G$.

Give an example of a subgroup H of a group G which does not satisfy condition (iii).

- 27. State and prove Cauchy's theorem using Cauchy's theorem, prove that a finite group G is a p-group Iff I G | is a power of p.
- 28. State and prove **Eisenstein's** theorem using **Eisenstein's** theorem, prove that the cyclotomic polynomial:

$$\phi_{p}\left(\dots - \frac{x^{p}}{x-1} - x^{n-1} + x^{n-9} + \dots + x + \dots + x$$

is irreducible over Q for many prime p.

 $(2 \times 4 = 8 \text{ weightage})$