\mathbf{D}	1	2	1	8	
ע	1	J	1	0	J

(Pages : 4)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 1C 04—ODE AND CALCULUS OF VARIATIONS

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage

1. Define radius of convergence of a power series and determine the same for the power series :

$$\frac{p(p-1) \quad (p-n+1)}{n=1} \quad \frac{p \cdot p = 0}{n!}$$

- 2. Locate and classify the singular points on the x-axis for the equation (3x + 1) + 2y = 0.
- 3. Evaluate $\lim_{b \to \infty} F \left[a, b, a \right] = \frac{a}{b}$
- 4. Determine the nature of the point $x \in \mathcal{O}$ for **Legendre's** equation $-x^2 + p(p+1)y = 0$, where p is a constant.
- 5. Find the first two terms of the Legendre series of f(x) = ex.
- 6. Define gamma function and show that (n + = n!) for any integer n > 0.
- 7.. Show that $[x]_{1}[x] = x J_{0}(x).$
- 8. Describe the phase portrait of the system $\frac{d}{dt} = 1$, $\frac{d}{dt} = 2$.

Turn over

- 9. State Liapunov's theorem.
- 10. Show that a function of the form a $x^3 + b x^2 y + c xy^2 + d y^3$ cannot be either positive definite or negative definite.

2

- 11. Find the normal form of Bessel's equation $x^2y + xy^2 + (x p^2)$
- 12. State Picard's theorem.
- 13. Show that f y satisfies a Lipschitz condition on the rectangle I x 151 and $y \le 1$.
- 14. Find the stationary function of $0 = (y)^2 = 0$ which is determined by the boundary conditions y(0) = 0 and y(4) = 3.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions.

Each question carries 2 weightage.

- 15. Show that $\tan x = x + \frac{1}{3}x^3 + \frac{1}{$
- 16. Find the general solution of:

$$(1=e^x)y + \frac{1}{2}y' + \epsilon y = 0$$

near the singular point x = 0.

17. Show that the solutions of the equation $(1 \times x^2) y'' - 2xy' + n$ (n + 1) y = 0, where n is a non-negative integer, bounded near x = 1 are precisely constant multiples of the polynomial:

$$F[-n, n + 1, 1, \frac{1}{2} (1-x)].$$

18. If $I(x) = x^p$ for the interval 0 x < 1, show that its **Bessel** series in the functions $J_p(\lambda_n x)$, where the X, 's are the positive zeros of $J_p \iff x = E_{n-1} + \frac{1}{n-1} + \frac{1$

3

- 19. Show that if w (t) is the **Wronskian** of the two solutions $(x_1(t), y_1(t))$ and $(x_2(t), y_2(t))$ on [a, b] of the homogeneous system $\frac{dx}{dt} = (t)x + b_1(t)y$; $\frac{dy}{dt} = a_2(t)x + b_2(t)y$, then w (t) is either identically zero or nowhere zero on [a, b].
- 20. Determine the nature and stability properties of the critical point (0, 0) for the system:

$$\frac{dy}{dt} = -4x - y, \frac{dy}{dt} = x - 2y.$$

- 21. Show that (0, 0) is an unstable critical point for the system $\frac{dx}{dt} = 2xy + x^3 + x^2 + y^5$
- 22. If y (x) is a non-trivial solution of y"+q(x)y = 0, show that y (x) has an infinite number of positive zeros if q(x) k for some $k > \frac{1}{4}$, and only a finite number if $q(x) < \frac{1}{4x2}$.
- 23. A curve in the first quadrant joins (0, 0) and (1, 0) and has a given area beneath it. Show that the shortest such curve is an arc of a circle.
- 24. Explain Picard's method of successive approximations of solving the initial value problem: $y = f(x, y), y(x_{ij}) = y_o$, where f(x, y) is an arbitrary function defined and continuous in some neighbourhood of the point (x_{ij}, y_{ij})

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries 4 weighting.

25. Find two independent Frobenius series solutions of the equation:

$$x^{2}y + xy' + (x^{2} - \frac{1}{4})y = 0.$$

Turn over

- 26. State and prove the orthogonality property for $J_{\mu}(x)$, the Bessel functions of order p.
- 27. For the non-linear system:

$$\frac{dx}{dt}$$
 $y(^2 + ^1)\frac{dy}{dt} = 2xy$.

- (i) Find the critical points.
- (ii) Find the differential equation of the paths.
- (iii) Solve this equation to find the paths.
- (iv) Sketch a few of the paths.
- 28. Solve the initial value problem by Picard's method:

$$\frac{dy}{dx} = z \qquad y(0) = 1$$

$$\frac{dz}{dx} = -y \qquad z(0) = 0.$$

 $(2 \times 4 = 8 \text{ weightage})$