D	529	7	2
_	U		_

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

(CUCSS)

Mathematics

MT IC 02—LINEAR ALGEBRA

Time: Three Hours ———

Maximum: 36 Weightage

Part A (Short Answer Type)

Answer **all** questions. Each question has weightage 1.

- 1. Prove that for a, $\frac{1}{3}$ in a vector space V, $-(a + 13) = -a + (-\beta)$.
- 2. Show that $U = \{(x, 2x) : x \in RI \text{ is a subspace of } \mathbb{R}^{\perp} \}$.
- 3. Verify whether the set of all 3×3 diagonal matrices span the space of all 3×3 matrices.
- 4. Find the dimension of the space of all upper triangular 2 x 2 matrices over R.
- 5. Find the Co-ordinate vector of $(1, -1, 2) \to \mathbb{R}^3$ w.r.t. the ordered basis $\{(1, 0, 1), (1, 0, 0), (1, 1, 0)\}$
- 6. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $\mathbb{T}(x, y) = (x + y, xy, y)$. Verify whether T is linear.
- 7. Let $W = \text{span } \{(1, 0, 1), (0, 0, 1)\}$. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by :

$$f(x, y, z) = y$$
. Verify whether $\int \mathbf{E} \mathbf{W}^{\circ}$.

- 8. Find the characteristic polynomial of $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.
- 9. Find all characteristic values of $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$
- 10. Let W = Span ((1, 2, 1)) and T: \mathbb{R}^3 be defined by $\mathbb{T}(x, y, z) = (x + z, 2y, 2z)$. Verify whether W is an invariant subspace of T.
- 11. Let $W_1 = \text{span } \{(1, 1, 1), (1, 1, 2)\}$, and $W_2 = \text{span } \{(2, 2, 3)\}$. Verify whether $W_1 + W_2$ is a direct sum.
- 12. Verify whether T \mathbb{R}^2 defined by $T(x, y) = \frac{x \pm y \times z}{2}$ y is a projection.

Turn over

- 13. Verify whether (1, 1), (1, -1) are orthogonal in R²
- 14. Prove that if E is an orthogonal projection of V onto W then (m(1-E) = W).

 $(14 \times 1 = 14 \text{ weightage})$

Part B (Paragraph Type)

Answer any **seven** questions.

Each question carries weighted 2.

- 15. Let V be a vector space over a field F and c 0 , Prove that if ca = 0 for some a \mathbf{E} V, then a = 0
- 16. Verify whether $S = \{(x, y, x + y + 1) : x, y \in \mathbb{R}\}$ is a subspace of
- 17. Show that the row space of $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{vmatrix}$ is **R3.**
- 18. Show by an example that for non-zero subspaces $\mathbf{W_1}$, $\mathbf{W_2}$ of a vector space V, dim ($W_1 \neq W_2$) can be equal to dim W_1 .
- 19. Find the matrix of the transformation T R³ \rightarrow R³ defined by T(x, y, z) = (x + y, y + z, y) w.r.t. the ordered basis ((0, 1, 1), (1, 1, 0), (1, 0, 0)1.
- 20. Let $V = R^2$ and $B = \{(1, 0), (0, 1)\}$. Find the dual basis of V^* corresponding to B.
- 21. Let T be an invertible linear operator and $c \neq 0$ be a characteristic value: of T. Prove that c = c is a characteristic value of c = c
- 22. Express **le** as a direct sum W_1 **W**₂, where W_1 = span ((1, 1, 1), (1, 2, 1)).
- 23. Let T be a linear operator on V and let $V = W_1 \oplus W_2$, where W_1 and W_2 are invariant under T. Prove that $det(T) = det(T_1) \cdot det(T_2)$ where T_i is the restriction of T to W_i for i = 1, 2.
- 24. Verify whether $(x \ y)$ defined by $(x \ | \ y) = x_1 + y_1$ for $x = (x_1, x_2)$, $y = (y_1, y_2)$ is an inner product on \mathbb{R}^2 .

 $(7 \times 2 = 14 \text{ weightage})$

3 D 52972

Part C (Essay Type)

Answer any two questions.

Each question carries weighting 4.

- 25. Define Co-ordinate vector of an element a in a finite dimensional vector space V, over a field F.

 Let B be an ordered basis of V and P be an n x n invertible matrix over F where $n = \dim V$. Prove that there exists a unique ordered basis B' of V such that $[\alpha]_{B} = P[\alpha]_{B'}$ for all a E V
- 26. (a) Let $\{a_1, a_2, ..., a_n\}$ I be a basis of a vector space V and β_1, P_2, β_n be elements of V. Prove that there exists a unique linear operator T on V such that $T(a_1) = \beta_1$ for every β_1 .
 - (b) Find all linear operators on the one-dimensional space III over R.
- 27. Define the transpose \mathbb{T} of a linear transformation T. Prove that for linear transformations of finite dimensional spaces, rank (T) = rank (Ti).
- 28. Let V be a finite dimensional space and W_1 , $W_{\text{distrib}}W_{\text{in}}$ be subspace of V and let $V = W_1 + \dots + W_k$. Prove that the following are equivalent
 - (a) W_1 , $W_2 = W_1$ are independent.
 - (b) If B_{\parallel} is a basis of W_{\parallel} for $\ell = 1,..., k$ then $B = B_1 \cup B2$ $v_{\dots} v_{\parallel} B_{\parallel}$ is a basis for V.

 $(2 \times 4 = 8 \text{ weightage})$