

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 1C 02-LINEAR ALGEBRA

(2016 Admissions)

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all the questions. Each question carries weightage 1.

- 1. Let V be a vector space over a field F. Show that if 0 is the scalar zero then 0.a = 0 for all $a \in V$.
- 2. Verify whether the vector (3, -1, 0, -1) is in the subspace of \mathbb{R}^4 spanned by the vectors (2, -1, 3, 2), (-1, 1, 1, -3) and (1, 1, 9, -5)?
- 3. Let V be a vector space over a field F. Show that if a, 13 and y are linearly independent vectors in V, then a + (3, (3 + y)) and y + a are linearly independent in V.
- 4. Let V be the vector space of all n x n matrices over the field F, and let $B \in V$. If T: V 4 V is defined by T(A) = AB BA for $A \in V$, then verify that T is a linear transformation.
- 5. Let T be the linear operator on C^3 , where C in the field of complex numbers, for which: T(1,0,0) = (1,0,1), T(0,1,0) = (0,1,1), T(0,0,1) = (1,1,0) Is T invertible? Justify your answer.
- 6. Let T be the linear transformation from R^3 into R^2 defined by $T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 x_i)$. If $B\{(1, 0, -1), (1, 1, 1), (1, 0, 0)\}$ is an ordered basis for R^3 and $B'\{(0,1), (1, 0)\}$ is an ordered basis for R^2 , then what is the matrix of T relative to R^3 and
- 7. Show that if W_1 and W_2 are subspaces of a finite-dimensional vector space V, then $W_1 = W_2$ if $W_1 = W_2$.
- 8. If W is a subspace of a finite-dimensional vector space V and if $\{g_1, g_2, g_3, g_4, g_5\}$ is any basis for W°, then show that $W = \sum_{i=1}^{N_{g_i}} N_{g_i}$, where N_{g_i} is the null space of g_{g_i} .

Turn over

2 D 13188

- 9. Let A be an n x n triangular matrix over the field F. Show that the characteristic values of A are the diagonal entries of A.
- 10. Let T be the linear operator on R^2 , the matrix of which in the standard ordered basis is $A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$ Prove that the only subspace of R^2 invariant under T are R^2 and the zero subspace.
- 11. Let E_1 and \mathbf{E}_2 be projections on a vector space V. Show that $E_1 + \mathbf{E}_2 = \mathbf{I}$ iff $\mathbf{E}_1 = \mathbf{E}_2 = 0$.
- 12. Let (I) be the standard inner product on R^2 . Show that for any a in R^2 we have $a = (a/e_1)e_1 + (a/e_2)e_2$ where $e_1 = (1, 0)$ and $e_2 = (0, 1)$.
- 13. Let W be a subspace of a finite dimensional inner product space V and E the orthogonal projection of V on W. Show that the mapping $13 \rightarrow R \mathbb{E}\mathbb{P}$ is the orthogonal projection of V onto
- 14. Let V be an inner product space, and let a, $R \in V$. Show that a = R if and only if $(a / y) = (\beta / y)$ for every $y \in V$.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions.

Each question carries weightage 2.

- 15. Show that the subspace spanned by a non-empty subset S of a vector space V is the set of all linear combinations of vectors in S.
- Suppose P is an n x n invertible matrix over a field F. Let V be an n-dimensional vector space over F, and let B be an ordered basis of V. Show that there is a unique ordered basis B' of V such that
 P [a] P for every a c V.
- 17. Let V and W be vector spaces over the same field of dimension n. Show that a linear transformation $T: V \rightarrow W$ is invertible if and only if T is onto.
- 18. Let V and W be vector spaces over the field F and let u be an isomorphism of V onto W. Prove that T uTu^{-1} is an isomorphism of L (V, V) onto L (W, W).
- 19. Let W be a subspace of a finite-dimensional vector 'space over a field F. Show that dim W + dimW = dim V.
- 20. Let V be a finite dimensional vector space over the field F. Show that each basis for V is the dual of some basis for V.

21. Let T be the linear operator on R³ which is represented in the standard ordered basis by the matrix

$$5 - 6 - 6$$

$$A = -1 \quad 4 \quad 2. \text{ Show that T is diaonalizable.}$$

- 22. Show that if V is a finite dimensional vector space and if $V = W_1 \oplus W_2 ED \dots W_K$, Then there exists k linear operators E_1 , $\mathbb{E}_{\mathbb{R}^m} = \mathbb{E}_{\mathbb{R}^m}$ on V such that:
 - (i) $\mathbb{E}^{2}_{i} = \mathbb{E}$, for i = 1, k.
 - (ii) $\mathbb{E}_{t}\mathbb{E} = 0$, if $\mathbb{I} \neq j$.
 - (iii) $I = + + \dots + \mathbb{E}_{n}$.
- 23. Show that if V is an inner product space, then for any vectors $\mathbf{x}_{\mathbf{i}}\mathbf{\beta}$ in V $_{\text{Ka I }}\mathbf{1}^{3}$]1,-11a11.IIPII.
- 24. Let W be the subspace of R^2 spanned by the vector (3, 4), where R^2 is the inner product space with standard inner product. If E in the orthogonal projection of \mathbf{R}^2 onto W, find:
 - (i) A formula for E (x_1, x_2) .
 - (ii) w¹

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries weightage 4.

- 25. Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. Show that if V is finite dimensional then rank (T) + nullity (T) = dim V.
- 26. Let W be the subspace of \mathbb{R}^5 which is spanned by the vectors $\alpha_1 = (1, 2, 1, 0, 0)$, $\alpha_2 = (0, 2, 3, 3, 1)$, $\alpha_3 = (1, 4, 6, 4, 1)$. Describe W° and find a basis for W.
- 27. Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Show that T is diagonalizable if and only if the minimal polynomial for T has the form.

 $p(x-c_I)(x-c_I)$ where $c_1, c_2, ..., c_k$ are distinct elements in F.

28. Let W be a finite-dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Show that E is an idempotent linear transformation of V onto W, \mathbf{W}^{\perp} is the null space of E, and $V = \mathbf{W} \mathbf{W}^{\perp}$.

 $(2 \times 4 = 8 \text{ weightage})$