\qquad
Reg. No,
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015 (CUCSS)

Chemistry
CH 1C 01-QUANTUM CHEMISTRY AND GROUP THEORY
(2015 Admissions)

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question carries a weightage of 1.

1. Calculate the de Broglie wave length of an electron accelerated by a potential of $10,000 \mathrm{~V}$.
2. Write $\hat{\mathrm{L}}_{z}$ in terms :
(a) Cartesian co-ordinates.
(b) Spherical polar co-ordinates.
3. Write recursion formula. Explain its significance.
4. Explain quantum mechanical tunneling.
5. Define spherical harmonics. Write one example.
6. Draw polar plots for 2 s wave function. Explain.
7. Define spin orbital. Write one example.
8. 1s wave function of H atom is given as $\left(1 / a_{0}\right)^{3 / 2} \frac{1}{\sqrt{\pi}} e^{-r / a_{0}}$. Draw the wave function. Explain the nature of the plot.
9. Write Schoenflies symbol of point group for :
(a) Cyclohexane in the chair form.
(b) Dichloromethane.
10. Write matrices for :
(a) C_{3}.
(b) S_{3}.
11. Distinguish between degenerate and non-degenerate representation with examples.
12. Find the similarity transform of any one of the vertical planes of ammonia.

$$
(12 \times 1=12 \text { weightage })
$$

Part B

Answer eight questions.

Each question carries a weightage of 2.
13. Write kinetic energy operator. Show that it is a Hermitian operator.
14. Find the commutator of $\hat{\mathrm{L}}_{x}$ and $\hat{\mathrm{L}}_{y}$.
15. An electron is confined to a cubical box of length 10 nm . Find the wave length of the radiation required for a transition from the ground state to the first excited state.
16. Apply Schrödinger wave equation for one dimentional simple harmonic oscillator transform it into a hermite equation.
17. 2s wave function is given as $\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a^{o}}\right)^{3 / 2}(2-\sigma) e^{-r / 2 a a_{o}}$. Find the value of r at which maximum probability for finding the electron is observed.
18. Using great orthogonality theorem, derive reduction formula.
19. Show that the symmetry operations $\mathrm{E}, e_{2(z)} i$ and $\sigma_{x y}$ form a mathematical group under multiplication.
20. Taking the positional co-ordination of all atoms of cis-butadiene $\left(\mathrm{C}_{2} v\right)$. generate a reducible representation (write only characters of the corresponding matrices).
21. Using great orthogonality theorem derive $\mathrm{C}_{4} \vee$ character table.
22. Define Hermitian operator. Show that Hermitian operators always have real eigen values.
23. Briefly explain "space quantization".
24. Generate group multiplication table for $\mathrm{C}_{3} \nu$.

Part C

Answer any two questions.
Each question carries a weightage of 4.
25. What are the postulates of quantum mechanics? Discuss.
26. Apply Schrödinger wave equation for a rigid rotor. Find eigen functions and eigen values.
27. Apply Schrodinger wave equation for H atom. Transform into spherical polar co-ordinates. Separate the variables r, θ and ϕ. Solve the $\Phi(\mathrm{phi})$ equation.
28. Discuss briefly :
(a) Symmetry breaking.
(b) Rodrigue's formula.
(c) Dirac's relativistic equation.
(d) Similarity transformation.

