\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

 (CUCSS)Physics
PHY2C06-MATHEMATICAL PHYSICS-II

(2012 Admissions)
Time : Three Hours
Section A
Maximum : 36 Weightage
Answer all questions.
Each question carries a weightage of 1

1. What are Cauchy-Riemann conditions for analyticity?
2. Define poles and zeros of a function.
3. Indicate how a simply connected region is converted into a multiply connected region.
4. Give an example for a cyclic group.
5. What is meant by irreducible representation?
6. Show that the identity element of a group is a class by itself.
7. Explain the concept of variation.
8. Prove the symmetry of Greens function.
9. What is the equation to a plane curve along which a particle acted upon by gravity alone would descent down?
10. What are Lagrange multipliers?
11. Explain separable kernals.
12. Define Volterra equations of the first and second kind.

Section B
 Answer any two questions.
 Each question carries a weightage of 6 .

($12 \times 1=12$ weightage)
13. Obtain the Laurent series expansion of a complex function
14. Explain homomorphism of groups. Establish the homomorphism $\mathrm{OF} \mathrm{SU}(2)$ and $\mathrm{SO}(3)$.
15. Discuss the Neumann series method for the solution of linear integral equations with an example.
16. Obtain the Green's function solution of Poisson's equation.

$$
(2 \times 6=12 \text { weightage })
$$

Section C

Answer any four questions.

Each question carries a weightage of 3 .
17. Find the sum of the residues of the function $f(z)=\frac{\tan z}{z}$.
18. Show that the order of each sub group of a group is a divisor of the order of the group.
19. Integrating over a suitable contour evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
20. Find the equation to a line connecting two parallel coaxial wire circles such that the wire revolving about the x-axis produces the minimum surface area.
21. Derive Fredholm equation, corresponding to $y^{\prime \prime}(x)-y(x)=0 ; y(1)=1, y(-1)=1$ by integrating twice.
22. Convert the equation $y^{\prime \prime}+\omega^{2} y=0$ to an integral equation.

$$
(4 \times 3=12 \text { weightage })
$$

