$\qquad$

# FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015 

 (CUCSS)Physics
PHY 1C 02-MATHEMATICAL PHYSICS-I
(2012 Admission onwards)
Time : Three Hours
Maximum : 36 Weightage

## Section A

Answer all the questions. Each question carries a weightage of 1 .

1. Define a vector in terms of its transformation under rotation of co-ordinates.
2. Which are the co-ordinate surfaces in spherical polar co-ordinates ?
3. Give the Laplacian operator in general currilinear co-ordinates.
4. State the quotient rule of tensors.
5. What is meant by Wronskian ?
6. Prove that the momentum operator is Hermitian.
7. Give an example for a self adjoint differential equation.
8. Define Dirac delta function.
9. What is meant by a unitary transformation ?
10. If $\lambda$ is an eigenvalue of a matrix $A$, show that $\lambda^{2}$ is an eigenvalue of $A^{2}$.
11. What are the general properties of Fourier series?
12. Show that $\mathrm{L}\left\{e^{a t}\right\}=\frac{1}{\mathrm{~S}-a}$ for $\mathrm{S}>a$.

$$
(12 \times 1=12 \text { weightage })
$$

## Section B

Answer any two questions.
Each question carries a weightage of 6 .
13. Derive the transformation relations from rectangular to spherical co-ordinates. Show that the spherical co-ordinate system is orthogonal.
14. Diagonalize the matrix A by a similarity transformation.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] .
$$

15. Explain the Gram-Schmidt orthogonalization procedure with a suitable example.
16. Establish the Orthogonality of Legendre Polynomials.

## Section C

Answer any four questions.
Each question carries a weightage of 3 .
17. Transform the unit vectors $i, j$ and $k$ in to their components in a spherical polar co-ordinate system.
18. Find the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$.
19. Find the regular singularities of Legendre equation.
20. Show that $\sqrt{y_{2}} \doteq \sqrt{\pi}$.
21. Show that $\mathrm{J}_{0}(x)^{2}+2\left[\mathrm{~J}_{1}{ }^{2}(x)+\mathrm{J}_{2}{ }^{2}(x)+\right.$ $\qquad$ $]=1$.
22. Find the Fourier series expansion of the function $f(x)=e^{x}$ in the interval $\theta<x<2 \pi$.

