Moun DX Add. FX

C 1248

(Pages : 4)

Name

Reg. No.....

SIXTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION **MARCH 2021**

Mathematics

MAT 6B 11-NUMERICAL METHODS

Time : Three Hours

Maximum : 120 Marks

Section A

Answer all questions. Each question carries 1 mark.

1. Set up a Newton's iteration for computing $\sqrt{5}$.

What do you mean by interpolation? 2.

Find the second divided difference of $f(x) = \frac{1}{x}$ for the values x = 1, 2, 3. 3.

4. Evaluate $\Delta\left(\frac{2x}{(x+1)!}\right)$, interval of differencing being unity.

5. State Gauss' forward central difference formula.

- Give the Lagrange's interpolation formula. 6.
- Given a set of *n*-values of (x, y), what is the formula for computing $\left\lfloor \frac{dy}{dx} \right\rfloor_{r}$ 7.

8. State Trapezoidal rule of integration.

In numerical integration, what should be the number of intervals to apply Simpson's 1/3-rule 9. and by Simpson's $\frac{3}{8}$ -rule.

	시 같이 많은 것을 알았는 것이 많을 때?	1	0	0	
10.	Determine the eigenvalues of the matrix	4	2	0	
	Determine the eigenvalues of the matrix	6	5	3	

- 11. State Picard's method of successive approximations.
- 12. Write Milne's corrector formula.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer at least eight questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 48.

13. Find a real root of the equation $x^3 - 2x - 5 = 0$, correct to 3 decimal places using bisection method.

14. Prove that $\mu = \sqrt{1 + \frac{1}{4} \delta^2}$

Turn over

15. Find the missing term in the following table :

Explain why the result differs from $3^3 = 27$.

- 16. Using Lagrange's interpolation formula, find the form of the function y(x) from the following table :
- 17. Prove that the divided differences are symmetrical in all their arguments.
- 18. Using the divided differences, show that the data :

 $x : -1 \ 0 \ 3 \ 6 \ 7$ $y : 3 \ -6 \ 39 \ 822 \ 1611$ represents polynomial of degree 4.

- 19. Evaluate the integral $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}$ -rule with $h = \frac{1}{4}$.
- 20. Use Gauss elimination with partial pivoting to solve the system 2x + y - z = -1; x - 2y + 3z = 9; 3x - y + 5z = 14.
- 21. Decompose the matrix $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ into the form LU where L is unit lower triangular and U an upper triangular matrix.
- 22. Determine the largest eigenvalue and the corresponding eigenvector of the matrix
 - $\mathbf{A} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$
- 23. Find the solution of the initial value problem $\frac{dy}{dx} = 2y x$, y(0) = 1, by performing three iterations of the Picard's method.
- 24. The following table gives angular displacements θ (in radians) at different times t (seconds): (0, 0.052), (0.02, 0.105), (0.04, 0.168), (0.06, 0.242), (0.08, 0.327), (0.10, 0.408), (0.12, 0.489). Calculate the angular velocity at t = 0.06.

25. Derive Simpson's
$$\frac{3}{8}$$
-rule $\int_{x_0}^{x_3} y dx = \frac{3}{8} h (y_0 + 3y_1 + 3y_2 + y_3).$

26. A rocket is launched from the ground . Its acceleration is registered during the first 80 seconds and is given in the table below. Using Trapezoidal rule find the velocity of the rocket at t = 80.

t sec		0	10	20	30	40	50	60	70	80	
$f(cm/sec^2)$	19,5	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67	
, (cm/bee)	1083	(det.)	18 18					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	(8	$3 \times 6 = 48$	marks)

Section C

Answer at least five questions. Each question carries 9 marks. All questions can be attended. Overall Ceiling 45.

- 27. Find the smallest root, correct to 4 decimal places of the equation $3x \cos x 1 = 0$.
- 28. Use the method of iteration to find a real root, correct to three decimal places, of the equation

 $2x-3 = \cos x$ lying in the interval $\left[\frac{3}{2}, \frac{\pi}{2}\right]$.

- 29. Find the cubic polynomial which takes the following values : y (1) = 24, y (3) = 120, y (5) = 336 and y (7) = 720. Hence or otherwise obtain the value of y (8).
- 30. State Gauss's backward formula and use it to find the value of $\sqrt{12525}$, given that

 $\sqrt{12500} = 111.8034, \sqrt{12510} = 111.8481, \sqrt{12520} = 111.8928, \sqrt{12530} = 111.9375$ and $\sqrt{12540} = 111.9822$.

31. By means of Newton's divided difference formula, find the values of f(8) and f(15) from the following table :

x : 4 5 7 10 11 13

- f(x) : 48 100 294 900 1210 2028
- 32. Given the table of values :

x : 51. 55 57

 $\sqrt[3]{x}$: 3.708 3.803 3.848

Use Lagrange's formula to find x when $\sqrt[3]{x} = 3.780$.

Turn over

33. From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2.

- x : 1.0 1.21.4 1.6 1.8 2.02.2y 2.71833.3201 4.0552 4.9530 6.0496 7.3891 9.0250
- 34. Find the inverse of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$ using Gauss-Jordan Method.
- 35. Compute the values of y(1.1) and y(1.2) using Taylor's series method for the solution of the problem $y'' + y^2 y' = x^3$, y(1) = 1 and y'(1) = 1.

Section D

Answer any **one** question. The question carries 15 marks.

36. (a) Using Newton's forward difference formula, find the sum

 $S_n = 1^3 + 2^3 + 3^3 + \dots + n^3.$

- (b) From the following table, find the number of students who obtained less than 45 marks : Marks obtained : 30-40 40-50 50-60 60-70 70-80 No. of Students : 31 42 51 35 31
- 37. Solve the system 6x + y + z = 20; x + 4y z = 6; x y + 5z = 7 using both Jacobi and Gauss-Seidel method.
- 38. (a) Solve, by Euler's modified method, the problem $\frac{dy}{dx} = x + y$ with y(0) = 0. Choose h = 0.2 and compute y(0.2) and y(0.4).
 - (b) Using Milne's formula, find y(0.8) given that

$$\frac{dy}{dx} = x - y^2$$
, $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$ and $y(0.6) = 0.1762$.

 $(1 \times 15 = 15 \text{ marks})$

 $(5 \times 9 = 45 \text{ marks})$