Reg. No....

SIXTH SEMESTER B.A. DEGREE EXAMINATION, MARCH 2019

(CUCBCSS)

Economics

ECO 6B 12-MATHEMATICAL ECONOMICS

Time : Three Hours

Maximum : 80 Marks

Part A

Answer all questions.

Each question carries 1/2 mark.

1. A linear function is in the form:

(a) y = a + bx.

(b) $y = a + bx + cx^2$.

(e) $y = \alpha x^n$.

(d) $y = a^x$.

2. For the consumption function, C = 100 + 0.8y, MPC is:

(a) 100.

(b) 0.8y.

(c) 0.8.

- (d) None of the above.
- 3. If the total revenue function is given as, $R = 2x^2 10x$, MR is :

(a) $x^2 - 5$.

(b) 4x.

(c) 4x - 10.

- (d) $2x^3 10x^2$.
- 4. If change in price, either rise or fall, is followed by a fall in total outlay, the Elasticity of demand said to be:

(a) Less than unity.

(b) Greater than unity.

(c) 1.

- (d) 0.
- 5. For the demand function, D = 100 2P, price elasticity is:

(a) $\frac{-2P}{100-2P}$

(b) -2P.

(c) -2.

(d) $\frac{100 - 2P}{2P}$

Turn

6. The sufficient condition for maximum is:

F-3	200.01	12 12
(a)	E 13	0 > 0.

(b)
$$f'(x) > 0$$
.

(c)
$$f'(x) = 0$$
.

(d)
$$f'(x) < 0$$
.

7. Marginal utility for the utility function $U = 20x^4 + 7x^3 + 13x^2 + 12x + 9$ is:

(a)
$$80x^3 - 7x^2 - 13x$$
.

(b)
$$80x^3 + 21x^2 + 26x + 12$$
.

(c)
$$80x^3 + 12$$
.

(d)
$$80x^3 + 21x^2 + 13x$$
.

S. In order to maximize profit, a firm must choose the output level such that its:

9. If the production function is a linear homogeneous production function then the elasticity substitution between capital and labour is:

(a) 0.

(b) Greater than one.

(c) Less than one.

(d) Equal to one.

10. Linear Programming as an economic tool was first developed and applied by :

(a) Prof. Danzig.

(b) Von Neumann.

(c) Morgenstern.

(d) Prof. W.W. Leontif.

11. The quantity of the supply of a product at a given price depends upon the nature of its:

(a) AC curve.

(b) MC curve.

(c) MR curve.

(d) AR curve.

12. Input-Output analysis assumes :

(a) Increasing returns to scale.

(b) Diminishing returns to scale.

(c) Constant returns to scale.

(d) None of the above.

(12 × 1/2 = 6 mark

Part B (Very Short Answer Questions)

Answer any ten questions.

- 13. Distinguish between Leontief open and closed input-output model. Each question carries 2 marks.
- 14. What is a linear homogeneous function?
- 15. What is optimal solution?
- 16. Define cross elasticity of demand.
- 17. Define production possibility curve.
- 18. For the total utility function $U = 20x^4 + 7x^3 + 13x^2 + 12x + 9$, compute marginal utility.
- What is an economic model?
- Define Marginal propensity to consume.
- If the price of a commodity is Rs. 5 and MR is Rs. 10, find the elasticity of demand.
- Define market equilibrium.
- What is an isoquant? 23.
- 24. Compute Average cost for the Total cost $C = 8x^3 + 3x^2 6x + 3$.

 $(10 \times 2 = 20 \text{ marks})$

Part C (Short Essay Questions)

Answer any six questions. Each question carries 5 marks.

- What is meant by input-output analysis? What are the various uses of input-output analysis? 25.
- Explain the concepts of maxima and minima of functions. How are they estimated? 26.
- Discuss the conditions for profit maximization under monopoly. 27.
- 28. For a firm under perfect competition, it is given that p = 3 and $c = 100 + .015x^2$. Find how many items are produced to maximize the profit. What is the profit?
- Determine Marginal Utilities of x and y at x = 3 and y = 2 for the Total Utility Function 29.

$$U = 5x^2 y + 2xy^3 + 3x + 9y.$$

Turn over

- 30. What are the applications of Linear Programming methods?
- 31. Calculate marginal productivity of labour and capital from the following production function $(i) \ X = L^2 + 2L + 10$; $(ii) \ X = K^2 + 3K^3$.
- 32. Write a note on indifference curve. What are the properties of indifference curve?

 $(6 \times 5 = 30 \text{ m})$

Part D (Essay Questions)

Answer any two questions.

Each question carries 12 marks.

33. Solve the following LPP graphically:

$$\begin{aligned} \text{Maximize Z} &= 2x_1 + 3x_2\\ \text{subject to} & x_1 + x_2 \leq 1\\ & 3x_1 + x_2 \leq 4\\ & x_1 \geq 0, \, x_2 \geq 0. \end{aligned}$$

- 34. Given the utility function U = f (x, y), the prices are p₁= Rs. 5 and p₂ = Rs. 5 and consumincome for the period is Rs. 50. Find out the consumer's equilibrium level of consumptic commodity x and y. Also prove the conditions for maximization.
- 35. Given the following Revenue (R) and Cost (C) functions for a firm R = 20q q² and C = q² + 8q find the equilibrium level of output, price, total revenue, total cost and profit.
- 36. Given the Demand and the Average Cost Functions of a monopolistic firm P = 32 3q, $AC = q + 8 + \frac{5}{q}$, what level of output maximizes total profit and what are corresponding values of R, AR, MR, C, AC, MC and Profit?

 $(2 \times 12 = 24 \text{ m})$