D 92670

Stop and Kt (Pages: 3)

Name.....

Reg. No.....

THIRD SEMESTER B.A. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2015

(UG-CCSS)

Core Course-Economics

EC 3B 03-QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS-I

(2009-2012 Admissions)

Maximum : 30 Weightage

Time : Three Hours

Part A

Answer **all** questions. Weightage 1 for a bunch of 4.

Weightage 1 for a bunch of 4.	
1. The roots of the equation $x^2 - 36 = 0$ are :	and some the second state of the second se
(a) ± 6 .	(b) $\pm 36.$
(c) 4, 9.	(d) 36, 1.
(c) 4, 9.2. The equation of the straight line having x	(b) $x + 2y = 20$.
(a) $2x + y = 20$.	(d) $-x + 2y = 20.$
(c) $-2x + y = 20$. 3. The diagonal elements of a skew symmetric	
	(b) Zero or one.
(a) Zeros.(c) Negative numbers.	(d) Ones.
4. The y intercept of the straight line $2x + y = 6$ is :	
	(b) $\frac{-1}{2}$.
(a) $\frac{1}{2}$.	2
(c) 2.	(d) None of these.
of then log vis	
6. If x and y are two positive numbers and	$\log (x + y) = \log x + \log y, \text{ offer } y$
7. The domain of the function $\sin x$ is —	
8. The formula for compound growth is —	
 9. An example of a diagonal matrix is 10. The signed minor of an element of a matrix is called 	
10. The signed millor of all closed and	

Turn over

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

- 12. The third order derivative of $y = 2x^2 10x + 19 10x + 19$

Part B (Short Answer Questions)

2

Answer **all** questions. Each question carries 1 weightage.

13. Find the sum of first 20 odd natural numbers.

14. What is compounding?

- 15. Find the cofactor of the element -5 in $\begin{pmatrix} 10 & 6 \\ 4 & -5 \end{pmatrix}$.
- 16. What is meant by simple growth?
- 17. What is meant by radius of curvature ?
- 18. Find the number of digits in 3^{10} given $\log_{10} 3 = 0.4771$.
- 19. Find the partial derivative of the function $w = x^4 5x^2y + y^2$ with respect to x.
- 20. Find the compound interest on certain sum, say Rs. 1,00,000 invested for a period of one year with annual rate of interest 10%.
- 21. A person has 500 fully paid and 1000 half paid shares of a company. The face value of each share is Rs. 10. The company declares a dividend of 10%. How much dividend will he get ?

 $(9 \times 1 = 9 \text{ weightage})$

Part C

Answer any **five** questions. Each question carries a weightage of 2.

- 22. Find the equation of a straight line passing through (2, 5) and perpendicular to the straight line 5x 2y + 8 = 0. Also find the slope and y intercept.
- 23. Find the total derivative of u with respect to t, where $u = x^3 + y^3$ and $x = e' \cos t$, $y = \sin t$.
- 24. Find the adjoint of the matrix $\begin{pmatrix} 3 & 1 & -1 \\ 1 & 4 & 2 \\ 2 & 3 & 1 \end{pmatrix}$.
- 25. The perimeter of a rectangle is 80 cm. For what dimensions, it has the maximum area?
- 26. Distinguish between Present value and future value.
- 27. Using an example to show that matrix multiplication is not commutative.
- 28. Explain convexity and concavity of functions with illustrative examples.

 $(5 \times 2 = 10 \text{ weightage})$

Part D

Answer any **two** questions. Each question carries a weightage of 4.

29. Solve the following system of equations using Cramer's rule.

5x - 2y + 3z = 10; 2x - 4y + z = 7; -x + 2y + 4z = 1.

30. Sketch the graphs of following :

a #

- (i) $f(x) = \sin x$; (ii) $f(x) = x^2$. Also write down the range in each case.
- 31. Find the maxima and minima of the function $f(x, y) = x^2 + y^2 xy x + y$.

 $(2 \times 4 = 8 \text{ weightage})$