		Reg. No
•	THIRD SEMESTER B.C.A. DEG	REE EXAMINATION, NOVEMBER 2015
		CBCSS - UG)
		Core Course
	BCA 3B 04—DATA	A STRUCTURES USING C++
Time	: Three Hours	Maximum: 80 Marks
		Part A
		ver all questions. stion carries 1 mark.
1.	The number of elements in an array a	could be determined by :
	(a) (u + I + 1).	(b) $(u + l + 2)$.
	(c) (u l + 1).	(d) $(u-1+2)$.
2.	Sparse matrices have:	
	(a) No zero.	(b) Many zeroes.
	(c) Higher dimension.	(d) None of the above.
3.	Which of the following data structure can't store the non-homogenous data elements:	
	(a) Records.	(b) Arrays.
	(c) Files.	(d) Linked lists.
4.	A data structure where elements can be added or removed at either end but not in the middle \vdots	
	(a) Stack.	(b) Queue.
	(c) Linked list.	(d) Deque.
5.	Which of the following is a two-way lis	t:
	(a) Singly linked list.	(b) Circular list.
	(c) Linked list with head node.	(d) None of the above.
6.	Node which is of degree zero is called:	
	(a) Root node.	(b) Terminal node.
	(c) Non-terminal node.	(d) None of the above.
7.	You can remove an element from a queue's ————	
	(a) Top.	(b) Front.
	(c) Bottom.	(d) Rear.

(Pages: 3)

D 92255

Turn over

Name.....

- 8. The maximum number of nodes in a binary tree of depth k is:
 - (a) 2k 1.

(b) $2k^{-1}$.

(c) $2^*(k-1)$.

- (d) $2k^{-2}$.
- 9. Which of the following is useful in traversing a graph in breadth first search:
 - (a) Stack.

(b) Queue.

(c) Linked list.

- (d) Tree.
- 10. Adjacency lists are used for -
 - (a) Stack representation.
- (b) Queue representation.
- (c) Graph representation.
- (d) Array representation.

 $(10 \times 1 = 10 \text{ marks})$

Part B

Answer **all** questions.

Each question carries 2 marks.

- 11. What is an abstract data type ?
- 12. What is time complexity?
- 13. Discuss about pointer arrays.
- 14. What are the applications of queues ?
- 15. Discuss indexed searching.

 $(5 \times 2 = 10 \text{ marks})$

Part C

Answer any **five** questions. Each question carries 4 marks.

- 16. Discuss the various approaches to algorithm design.
- 17. Explain recursion with an example.
- 18. Discuss array as an abstract data type.
- 19. Explain the way to represent a sparse matrix using arrays.
- 20. What is a queue ? What are its applications ?
- 21. Explain the bubble sort technique.
- 22. Describe the different methods to represent binary tree in memory.
- 23. Explain binary search.

 $(5 \times 4 = 20 \text{ marks})$

Part D

Answer any **five** questions. Each question carries 8 marks.

- 24. What is an algorithm ? Explain the performance analysis of algorithms.
- 25. Differentiate between static and dynamic data structures.

D 92255

- 26. What is an array data structure ? Explain the representation of arrays in memory.
- 27. What is a stack ? Write a program to implement a stack using array.
- 28. What is a circular queue \textstyle \text{Write the algorithms for insertion and deletion operations on a circular queue.}

3

- 29. Discuss the application of graph structures. What are the different methods to traverse graphs ?
- 30. Write a program to implement heap sort. Explain.
- 31. What is hashing ? Explain the different hash functions.

(5 × = 40 marks)