C 62	2735 (Pages : 3)	Name
J 02	(rages. o)	
		Reg. No
	SECOND SEMESTER B.C.A. DEGREE EXA	MINATION, MAY 2014
	(U.GCCSS)	
	Complementary Course	
	CA 2C 04—NUMERICAL METHO	DS IN C
Time:	: Three Hours	Maximum: 30 Weightage
	Part A (Objective Type Quest	ions)
	Answer all twelve questions.	
1.	. The numbers in the computer word can be stored in two forms. Which are they $ eals ightharpoonup$	
2.	2. Define the inherent error.	
3.	When we can say that is a root of the equation $f(x) = 0$.	
4.	Define the central difference operator 5.	
5.	Write Newton's forward difference approximation of 0 (h²).	
6.	What is the formula to find $\int_{a}^{b} f(x) dx$ using Simpson's rule	?
Fill in	the blanks:	
7.	. To avoid the difficulty of keeping every number less than 1 in magnitude during computation, most computers use representation for a real number.	
8.	Bisection method is based on the repeated application of th	e theorem.
9.	In Gauss-Jordan elimination method the coefficient matrix	is reduced to a matrix.
10.	. If there are $n + 1$ distinct points a $x_0 < x_1 < x_2 < \cdots < x_n$	b, then the problem of Lagrange and
	Newton interpolation for the continuous function $f(x)$ on conditions	
11.	The Hermite interpolating polynomial interpolates not at a given set of tabular points.	only the function $f(x)$ but also its
12.	The general problem of numerical integration is to find a	an approximate value of the integral
	I = where $w(x) > 0$ in [a, b].	

Turn over

 $(12 x^{1}/_{4} = 3 \text{ weightage})$

Part B (Short Answer Questions)

Answer all nine questions.

- 13. Find the decimal number corresponding to the binary number $(111 \cdot 011)_2$.
- 14. Construct the difference table for the sequence of values $f(x) = (0, 0, 0, \varepsilon, 0, 0, 0, 0)$.
- 15. Solve the equations x + y = 2 and 2x + 3y = 5 by Gauss-Jordan method.
- 16. State intermediate value theorem.
- 17. Evaluate $\int_{0}^{4} e^{x} dx$ by Simpson's '1/3' rule using the data e = 2.72, $e^{2} = 7.39$, $e^{3} = 20.09$ and $e^{4} = 54.60$.
- 18. Perform 2 iterations of the bisection method to obtain a real root of the equation $x_3 x 11 = 0$.
- 19. Solve $\frac{dy}{dx} = 1$ y, y(0) = 0 using Euler's method. Find y at x = 0.1.
- 20. Find the nth difference of ex.
- 21. Show that $\mu = [1 + 8^2/4]^{1/2}$.

 $(9 \times 1 = 9 \text{ weightage})$

Part C (Short Essay Questions)

Answer any five questions.

- 22. Apply Cramer's rule to solve the equations, 3x + y + 2z = 3, 2x 3y z = 3 and x + 2y + z = 4.
- 23. Solve the following system of equations using Gaussian elimination method x + y + z = 9, 2x 3y + 4z = 13 and 3x + 4y + 5z = 40.
- 24. Construct Newton's forward interpolation polynomial for the following data:

25. Evaluate $\int_{0}^{10} \frac{dx}{1 + x^2}$ by using Trapezoidal rule.

- 26. Using Taylor's method, find y (0.1) from $\frac{dy}{dx} + 2xy = 1$, $y_0 = 0$.
- 27. Evaluate $\sqrt{12}$ to four places of decimals by Newton-Ruphson method.
- 28. The equation $8x3 12x^2 2x + 3 = 0$ has 3 real roots in the interval [-2, 3]. Find the intervals each of unit length containing each one of these roots.

 $(5 \times 2 = 10 \text{ weightage})$

Part D (Essay Questions)

Answer any two questions.

- 29. (a) Write the Lagrange's interpolation formula.
 - (b) Use Lagrange's formula to find the value of y at x = 6 from the following data:

x: 3 7 9 10 168 120 72 63

30. (a) Find y'(x) given:

x : 0 1 2 3 4 y(x) : 1 1 15 40 85

(b) The population of a certain town is shown in the following table:

Year x : 1931 1941 1951 1961 1971 Population in 1961 y : 40.62 60.80 79.95 103.56 132.65

- 31. (a) What is the relation between Runge-Kutta method and modified Euler's method.
 - (b) Use Runge-Kutta method of the fourth order to find y (0.1) given that:

$$\frac{dy}{dx} \frac{1}{x+y}, y(0) = 1.$$

 $(2 \times 4 = 8 \text{ weightage})$