C 62	2632 (Pages : 3)	Name								
		Reg. N	o							
SEC	SECOND SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION, MAY 2019									
B.C.A.										
BCA 2C 03—COMPUTER ORIENTED STATISTICAL METHODS										
	(2014 Admissions)									
Time	: Three Hours		Maximum: 80 Marks							
	Part A									
	Answer all questions.									
	Each question carries 1 mark.									
1.	Sum of deviations observations from their arithmetic mean is —									
2.	is the graphical method studying dispersion.									
3.	Set of all possible outcomes of a random experiment is known a	s —								
4.	Three unbiased coins are tossed is the probability of	getting a	t least one head.							
5.	Two random variables are said to be independent if $f(x, y) =$		<u> </u>							
6.	A distribution for which mean is greater than variance is ———									
7.	Standard deviation of sampling distribution of a statistic is called	ed ———								
8.	The square of Standard. Normal distribution is									
9.	The joint distribution of sample observations is called									
10.	If t _p is consistent for 0, t _p ² is consistent. for ———									
			(10 rr 1 = 10 mordro)							
$(10 \times 1 = 10 \text{ marks})$										
Part B (Short Answer Type Questions)										
Answer all questions.										

Each question carries 2 marks.

- For any two positive numbers, prove that $AH = G^2$, where A is the arithmetic mean, G is the 11. geometric mean, and H is the harmonic mean.
- 12. Give classical definition of probability.
- 13. Define random variable and give two examples.

Turn over

- 14. Define F-statistiL
- 15. What is a mean by a statistical hypothesis? Explain simple and composite hypothesis.

 $(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type Questions)

Answer any five questions. Each question carries 4 marks,

- 16. Explain the method of constructing a Lorenz curve.
- 17. Prove that standard deviation is independent of change of origin, but not of scale.
- 18. Let B c_A, prove that (i) P (A nB^c) = P (A) P (B); and (ii) P (B) P (A).
- 19. The p.d.f, of a random variable X is given by f(x) = kx(1-x); 0 < x 1:
 - (i) Find the value of k.
 - (ii) Obtain the distribution function of X.
- 20. Define the moment generating function of a random variable. Explain how you will obtain moments from a moment generating function.
- 21. Obtain the sampling distribution of mean of the samples from a Normal population.
- 22. Obtain the interval estimate of variance of a Normal population.
- 23. Obtain the maximum likelihood estimator of parameter of a Poisson population.

 $(5 \times 4 = 20 \text{ marks})$

Part **D** (Essay Questions)

Answer any five questions. Each question carries 8 marks.

24. Obtain the co-efficient variation for following data:

Length of life (in hours): 500-700 700--900 900-1100 1100-1300 1300-1500

No.of bulbs 5 11 26 10 8

25. Fit a straight line to the following data:

Year	1992	1994	1996	1998	2000	2002	2004
Production	77	81	88	94	94	96	98

C 62632

26. Find the co-efficient of correlation between X and Y from the following data:

X	15.5	16.5	17.5	18.5	19.5	20.5
	75	60	50	50	45	40

3

- 27. The two lines of regression are given by 8x 10y 466 = 0 and 40x 18y = 214:
 - (a) Identify the regression lines.
 - (b) Find the mean values of X and Y.
 - (c) Find the correlation co-efficient between X and Y.
 - (d) Find the standard deviation of Y, if the standard deviation of X is 3.
- 28. From a group of 3 Indians, 4 Pakistanis and 5 Americans, a sub-committee of four peoples is selected by lots. Find the probabilities that the sub-committee will consist of :
 - (a) 2 Indians and 2 Pakistanis.
 - (b) 1 Indian, 1 Pakistani and 2 Americans.
 - (c) At least one Indian.
- 29. A random variable X has the p.m.f. given by:

X
$$-3$$
 -1 0 1 2 3
f (x) k^2 $2k^2 + k$ $2k^2 + 3k$ $4k^2 + 5k$ $3k^2 + 3k$ $2k^2 + k$

- (a) Find the value of k.
- (b) Obtain the distribution function of X
- (c) Find P (X > 1) and P (X 5 2).
- - (a) The MLE of p when 6^2 is known.
 - (b) The MLE of 0^2 when μ is known.
- 31. Let $x_1, x_2,..., x_9$ is a random sample of size nine taken from a Normal population N 25). To test $H_o: \mu = 5$ against $H_1: p, = 6$, the critical region suggested is 7 where x is the sample mean. Find the significant level and power of the test.

 $(5 \times 8 = 40 \text{ marks})$