C 82167	(Pages : 4)	Name.

Reg.	No
5.	_ 10

SECOND SEMESTER B.C.A. DEGREE [SUPPLEMENTARY/IMPROVEMENT] EXAMINATION, APRIL/MAY 2015

(UG-CCSS)

Complementary Course				
CA 2C 04—NUMERICAL METHODS IN C				
Time: Three Hours	Maximum : 30 Weightage			
I. Answer all twelve questions:				
1 Give an example of an al	gebraic equation.			
2 In the bisection method to	find the root between a and b how we can find the first approximation.			
3 Give the Newton-Raphso				
4 When we can say that 🚯	is a root of the equation $f(x) = 0$?			
Fill in the blanks :				
5 In Gauss elimination me equivalent syste	ethod the system of simultaneous equations is transferred to an em.			
(a) Lower triangular.				
(b) Upper triangular.				
(c) Diagonal.				
6 The relation between the s	hift operator E and the backward difference operator V is given by			
(a) $\mathbf{E}^{\frac{1}{2}} - \mathbf{E}^{\frac{1}{2}}$.	(b) 1-E.			
(c) $E - 1$.	(d) 1 + E.			
7 Runge-Kutta method of s	second order is also known as			
(a) Euler's method.	(b) Picard's method.			
(c) Modified Euler's n	nethod. (d) Taylor Series method.			
8 In the method of false posit is given by	tion to find the root off $(x) = 0$ between a and b , the first approximation			
(a) $x_{\parallel} = \frac{\mathbf{a} + \underline{b}}{2}$	(b) $\frac{\int_{a}^{a} -of(b) + bf(a)}{\int_{a}^{b} -f(a)}$			
(c) $\mathbf{x}\mathbf{i} = \frac{\mathbf{a}f(\mathbf{a}) - \mathbf{b}f(\mathbf{b})}{f(\mathbf{a}) - f(\mathbf{b})}$				

Turn over

	2	C 82167
	interpolating polynomial assigned both the function values and its firch point of interpolation :	rst derivative values
(a)	Hermite interpolation Polynomial.	
(b)	Lagrange's interpolation polynomial.	
(c)	Newton's interpolation formula.	
(d)	Gauss interpolation formula.	
10 What i	s the base of the hexadecimal system ?	

(b) 6.

(c) 8.

(d) 16.

- 11 In numerical integration which rule has an error of order. h²:
 - (a) Trapezoidal rule.
 - (b) Simpson's 🔏 rule.
 - (c) Simpson's three eight rule.
- 12 If $f(x) = \frac{1}{x}$, find the divided difference f[a, :]

(a)
$$\frac{1}{ab}$$

(b)
$$\frac{-1}{ab}$$

(c)
$$a-b$$

(d)
$$ab$$

 $(12 \text{ x}^{-1}/4 = 3 \text{ weightage})$

- II. Short answer type questions. Answer all questions:
 - 13 Taking h to be the interval of differencing find Δ
 - 14 Find y (0.1) by Euler's method given that $\frac{dy}{dx} = 1$ —y, y (0) = 0.
 - 15 Find the 1st approximation of the root lying between 0 and 1 of the equation $x^3 + 3x 1 = 0$ by Newton-Raphson formula.
 - 16 Solve the following equations by Gauss-Jordan method x + y = 2, 2x + 3y = 5.
 - 17 Show that $Y = 1 \frac{2}{n}$ is a solution of the difference equation $(n + 1)y_{n+1} + ny_{n+1} = 2n 3$.
 - 18 Convert $(58)_{10}$ to the corresponding binary number.

19 Construct the forward difference table for the following data:—

x: 0 1 2 3 4y: 8 11 9 15 6

20 State Trapezoidal rule to evaluate $\int_{\mathbb{R}_n} \mathbf{f}^{-x} dx$.

21 If $I_1 = 0.775$, $I_2 = 0.7828$. Find **I** using Romberg's method.

 $(9 \times 1 = 9 \text{ weightage})$

- III. Short essay questions. Answer any five:
 - 22 Perform 4 iterations of the Newton-Raphson method to obtain the approximate value of $(17)^{16}$ starting with the initial approximation $\mathbf{x}_{11} = 2$.
 - 23 Apply Cramer's rule to solve the equations 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 4.
 - 24 Solve the following system of equations using Gauss elimination method:

$$x + y + z = 9$$

$$2x - 3y + 4z = 13$$

$$3x + 4y + 5z = 40$$
.

- 25 Obtain the least squares polynomial approximation of degree one for $f(x) = x^{-1}$ on [0, 1].
- 26 Find the value of y from the following data at x = 2.65.

- 27 Evaluate $\int_{1+x}^{2} \frac{dx}{2}$ using Trapezoidal rule.
- 28 Using Euler's method solve $\frac{dy}{dx} = 1 + xy$ with y (0) = 2. Find y (0.1) and y (0.2).

• $(5 \times 2 = 10 \text{ weightage})$

- IV. Essay type questions. Answer any two:
 - 29 Given $y = x^2 y$, y(0) = 1. Find y (0.1) using Runge-Kutta fourth order.

Turn over

30 Evaluate
$$\int_{0}^{1} \frac{dx}{1 \times using}$$

- (i) Trapezoidal rule.
- (ii) Simpson's ¼ rule.
- (iii) Simpson's ³/₈ rule.

Find the error in each method by comparing with the actual integration upto 4 places of determination.

31 Find the Hermite's interpolation polynomial for the following data :—

 $(2 \times 4 = 8 \text{ weightage})$