FIRST SEMESTER B.C.A. DEGREE EXAMINATION, JANUARY 2014

(UG-CCSS)

Complementary Course

CA 1002—DISCRETE MATHEMATICS

Time: Three Hours

Maximum: 30 Weightage

Part A (Objective Type Questions)

Answer all questions.

- 1. Find the value of p(n, 0):
 - (a) 1.

(b) n.

(c) O.

- (d) n!.
- 2. What is the order of the recurrence relation $a_{r-1} = 8a_{r-1} + 8a_{r-2} + a_{r-3} = 0$, r23.
 - (a) 0.

(b) 3.

(c) 2.

- (d) 1.
- 3. The equivalent statement of $(P Q) Q \rightarrow P)$ is:
 - (a) **P** Q

(b) P n Q.

(c) P v Q.

(d) $P v \sim Q$.

- 4. $\frac{P(n, r)}{c(n, \mathbf{r})}$:
 - (a) n!.

(b) r

(c) (n - r) |

- (d) 1.
- 5. The negation of $\forall x, p (x)$ is
- 6. The value of $\binom{n!}{-3}!$ is _____
- 7. Value of *c* (*n*, 1) is _____
- 8. If p = T and q = F then $-P \rightarrow Q$ is —
- 9. Every group is abelian. True or False.

Turn over

2

- 10.. p(n, r) = p(r, n). True or False.
- 11. Every field is an integral domain. True or False.
- 12. Does p(n, r) exist for $n \le r$

 $(12 \times \frac{1}{4}) = 3 \text{ weightage}$

Part B (Short Answer Questions)

Answer all questions.

- 13. Evaluate p(n, r) and c(n, r) for n = 6 and r = 4.
- 14. Define skew field.
- 15. Write the truth table for $(P \vee Q) \rightarrow (P \wedge Q)$.
- 16. Write the following statement in symbolic form.

"If either Jerry takes calculus or Ken takes sociology, then Lassy will take English".

- 17. Define zero divisor of a ring.
- 18. Show that binary operator * defined on Q+ by a * $b = \frac{ab}{a}$ is a group.
- 19. Solve the recurrence relation a, $= a_{r-1} a_r$. -2.
- **20.** If c(n, 9) = c(n, 8). Find c(n, 17).
- ^{21.} Find the number of ways to point 12 offices so that 3 of them will be given, 2 of them pink, 2 of them Yellow and the remaining are white.

 $(9 \times 1 = 9 \text{ weightage})$

Part C (Short Essay Questions)

Answer any five questions.

22. Solve the recurrence relation

$$a_r = a_{r-1} + 6 = +r \qquad r > 2.$$

23. Show that

$$c(n, r) + c(n, r-1) = c(n + ...)$$

24. Let
$$a = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 \end{bmatrix}$$
 and
$$= \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 1 \end{bmatrix}$$
. Show that $\begin{bmatrix} 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 1 \end{bmatrix}$.

- 25. Find the value of n such that p(n, 5) = 42 p(n, 3).
- Show that every finite integral domain is a field.
- Show that identity element and inverse element are unique in a group. 27.
- 28. If $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{x}{\sqrt{2}}$ Find x

 $(5 \times 2 = 10 \text{ weightage})$

Part D (Essay Questions)

Answer any two questions.

- 29. If **R** is a ring with additive identity 0, then for any a, b G. We have
 - (a) $0 \cdot a = a \cdot 0 = 0$
 - (b) a(-b) = -(a)b = -(ab).
 - (c) (-a)(-b) = ab
- 30. Write the truth table for $\sim (p \ n \ Q)$ $p \ v \sim Q$. And verify them.
- 31. Find the sum of $12 + 2^2 + \dots + r^2$.

 $(2 \times 4 = 8 \text{ weightage})$