D32519	(Pa	ges : 3)	Name
			Reg. No
FIRST S	SEMESTER B.C.A. DEGR	EE EXAMINATIO	ON, JANUARY 2013
	(0	CC\$8)	
		BCA	
	CA 10 02—DISCR	ETE MATHEMATIC	CS
Time: Three Ho	ours ———		Maximum: 30 Weightag
	Part A (Objecti	ve Type Questions)	
	Answer all 1	welve questions.	
1. The value	e of $c(n, n)$ is:		
(a)	1,	(b) <i>n</i> .	
(c) (0 .	(d) n!.	
2. What is th	he order of the recurrence relation	on $a_{r} - 6 a_{r'} - 1 = 0, r$	1.
(a) ().	(b) 1.	
(c) 2	2. ——	(d) 6.	
3. Example	of a group of four elements.		
(a) s	84.		
(b)	Klein group.		
(c) S	Set of integers less than under ad	dition.	
(d) 2	z ₄ under multiplication.		
4. The valu	e of NP_{n} -1 is:		
(a) 1	n.	(b) n!.	
(c) 1	l .	(d) n -1.	
5. If $p = \mathbf{F}$	and $q = F$ then $p = Q$ is		
6. The neg	gation of $3x$, $p(x)$ is ———		
7. The value	ue of 01 is		
8. Formula	a for $p(n, r)$ is $$		

9. If p = T then $pn \nearrow = F$. True or False.

10. Can every group of prime order a generator ?

Turr

2 D 32519

- 11. Every integral domain is a fluid. True or False.
- 12. c(n, r) = c(n, n r). True or False.

 $(12 \times 1/=3 \text{ weightage})$

Part B (Short Answer Questions)

Answer all questions.

13. Form the conjunction of:

P: It is raining today.

Q: There are 20 tables in this room.

- 14. Evaluate p(n, r) for n = 6 and r = 2.
- 15. Find the number of ways to paint 12 offices so that 3 of them will be green, 2 of them pink, 2 of them yellow and the **remainings** are white.
- 16. If c(n, 9) = c(n, 8). Then find c
- 17. Define commutative ring with example.
- 18. Write the truth table for conjunction and disjunction.
- 19. Symbolize the expression

"all the world loves a lover".

- 20. Suppose a housekeeper wants to schedule spaghetti dinner three times each week. Find the number of ways of scheduling it.
- 21. If G is group with binary operation * and if a and b are any elements of G. Then show that the linear equation a * x = b and y * a = b have unique solutions in G.

 $(9 \times 1 = 9 \text{ weightage})$

Part C (Short Essay Questions)

Answer any five questions.

If
$$a = a_0 + a_1 r + a_2 r^2 + a_1 r + a_2 r^2$$
, show that $a = o(r^2)$.

$$_{1/2} = _$$

ind the value of n such that p(n, 5) = 42 p(n, 3).

now that every field F is an integral domain.

ate and prove division algorithm for Z.

- 27. Find the truth table for $(p \ v \ Q) \ v \ p$.
- 28. Let a = r + O(1/r) and $b = \sqrt{r} + O(1/r)$. Show that $ab = r^{1/r} + 0$

 $(5 \times 2 = 10 \text{ weightage})$

Part D (Essay Questions)

Answer any two questions.

29. Solve the equations:

$$a_r = 3a_{r-1} + 2b_{r-1}$$
 and

$$b_r = a_r + b_r - 1$$
 with the

boundary conditions $\mathbf{a}_{\mathbf{u}} = 1$ and $\mathbf{b}_{\mathbf{u}} = 0$.

- **30.** If **R** is a ring with additive identity 0, then for any $a, b \in \mathbf{R}$, we have
 - (a) $0 \cdot a = a \cdot 0 = 0$.
 - (b) a(-b)=(-a)b=(ab).
 - (c) (-a)(-b) = ab.
- **31. Write the truth table for** \sim ($p \land Q$) and $(-p \lor Q)$ and verify them.

 $(2 \times 4 = 8 \text{ weightage})$