Reg. No.....

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2015

(CUCBCSS-UG)

Complementary Course

BCA 1C01--MATHEMATICAL FOUNDATION OF COMPUTER APPLICATIONS

Maximum: 80 Marks

Time: Three Hours

Part A (Objective type)

Answer all ten questions.

$$\cos 0 - \sin \theta$$
 What is the rank of the matrix $\sin 0 \cos 0$

- 2. What is the value of a x b if a and b are parallel vectors $^{?}$
- $_{3.}$ State whether the following statement is true or false : "An additive constant vanishes on differentiation".
- 4. What is the derivative of $(3 x^2 + 2)^2$?
- 5. Find the integral of $2x^2 3x + 2$

6. Evaluate
$$\int_{0}^{\pi} \sin \pi dx$$

- What is the order of the differential equation
- Write the general form of a first order linear differential equation.

Turn over

- 9. What are the roots of the auxiliary equation of $\frac{dy}{dx} 5\frac{dy}{dx} 6y = 0$
- Write a particular integral of $\frac{d^2y}{dx} + 8\frac{dy}{dx} + 25y = e$

(10 x 1 = 10 marks)

Part B (Short Answer Type)

Answer all five questions.

11. Find the values of x, y, z and a which satisfy the matrix equation.

$$\begin{bmatrix} x + 3 & 2y + x \\ z - 1 & 4a - 6 \end{bmatrix} \begin{bmatrix} 0 & -7 \\ 13 & 2a \end{bmatrix}$$

- 12. If $f(x) = 7x^{-1}$ 0 -3 find f'(1) and f'(-1).
- 13. Show that $\int_{0}^{\pi/2} \sin^2 x dx = \int_{0}^{\pi/2} \cos^2 x dx$
- 14. Solve the initial value problem Y Y(1)
- 15. Solve $(D^2 5D + 6) y = 1$ Where

$(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type)

Answer any **five** questions.

- 16. Find the eigen values of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
- 17. If $A = \begin{pmatrix} 3 & 3 & 4 \\ 2 & -3 & 4 & \text{find } A^{-1} \\ 0 & -1 & 1 \end{pmatrix}$

- Find the differential coefficient of tan x, using the first principle.
- State chain rule of differentiation of composite functions. Using chain rule find 19.

When
$$y = 9u^2$$
 and $u = 1 - \frac{a}{2}x^2$.

20. Prove that
$$\int_{1}^{3} (x^{2} + x + 3) dx = \int_{1}^{2} (x^{2} + x + 3) dx + \int_{2}^{3} (x^{2} + x + 3) dx.$$

21. Integrate $(3x_{-1})(2x + 1)$ using the method of partial fractions.

22.
$$\frac{dy}{dx} + y \tan x = \cos^2 x$$
.

23. Solve
$$\frac{d^{-}y}{dx^{2}} + 4y = \sin^{-}x$$
.

 $(5 \times 4 = 20 \text{ marks})$

Answer any **five** questions.

24. Find the rank of the matrix
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & -1 & 1 & 2 \\ -3 & 0 & 1 & -2 \\ 0 & 1 & 5 & 4 \end{vmatrix}$$
 by reducing it to the row reduced echelon form.

$$2x - y + z = 7$$

Test for consistency and if consistent solve the system of equations 3x + y - 5z = 13x+y+z=5

- 26. (i) Differentiate $(x + 1) \sin x$.
 - (ii) Using the quotient rule differentiate $\frac{\cos x}{1 + \sec x}$.
- 27. Evaluate $\int_{0}^{n/2} (\sin 0) \cos^{y} 0 d0$.
- 28. Solve $\frac{dx}{dx} + 2y = 4x$.
- 29. Solve $\frac{dy}{dx} + \frac{x 2y}{2x y} = 0$.
- 30. $(D^2 3D + 2) y = xe^x + \sin 2x$ Where $D = \frac{1}{dx}$.
- 31. Form the partial differential equation by eliminating the arbitrary constants a and b from the equation ax^2 by^2 $z^2 = 1$.

 $(5 \times 8 = 40 \text{ marks})$