D 92	2873	(Pages : 2)	Name
		, ,	Reg. No
_			
FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2015			
		(CUCBCSS—UG)	
Complementary Course			
BCA 1C 02—DISCRETE MATHEMATICS			
Time:	Three Hours		Maximum: 80 Marks
Part A (Objective Type)			
		Answer all ten questions.	
1.	Find the negation of the sta	tement 'Jane is rich and happy'.	
2.	State DeMorgan's laws in Be	oolean Algebra.	
3.	Draw a simple graph on 4 ve	ertices.	
4.	A walk in which no vertex is	s repeated is called ————	
5.	State Euler's formula for pla	ane graph.	
6.	Find B-A if $A = \{1, 2, 3, 4, 5\}$	$B = \{0, 3, 6\}.$	
7.	Number of subsets of a set v	with n elements is ————	
8.	Give an example for a 3-reg	gular graph.	
9.	Give an example for a graph	h which is Eulerian, but not Hamilt	onian.
10.	What can we say about sets	A and B if $A \cup B = A$ \mathbb{T}	
			$(10 \times 1 = 10 \text{ marks})$
Part B ((Short Answer Type)			
		Answer all five questions.	
11.	What can we say about the relation?	relation R on a set A if R is both a	partial order and an equivalence
12.	Use truth tables to verify th	$\mathbf{nat} \ p \mathbf{A} \mathbf{T} = p.$	
13.	Define isomorphism of two	graphs.	
14.	Define a binary tree.		
15.	Show that K ₄ is planar.		
			$(5 \times 2 = 10 \text{ marks})$
Part C (Short Essay Type)			

. Answer any five questions.

Turn over

16. Discuss different types of quantifiers and give examples.

17. Define a Boolean Algebra.

2 D 92873

- 18. Define (a) graph; (b) regular graph; (c) multigraph; and (d) degree of a vertex.
- 19. Let G be a graph in which the degree of every vertex is at least 2. Then show that G contains circuit.
- 20. Prove that in a tree every vertex of degree greater than one is a cutvertex.
- 21. Find the power set of each of these sets:
 - (a) 4) (b) (b) (4)} (c) (4), (6)] (a) and (d) (a) (x, y).
- 22. Explain the concepts of binary tree with an example.
- 23. Show that in any group of two or more people, there are always two with exactly same number of friends inside the group.

 $(5 \times 4 = 20 \text{ marks})$

Part D (Essay Type)

Answer any five questions.

- 24. Using truth tables, show that p v (q A r) and (p v q) n (p v r) are logically equivalent 1. Prove
 - (a) Involution law [(b) Uniqueness of zero element and unit element [and (c) Absorption Laws [d) 0' = 1 and = 0 for a Boolean Algebra.
- 25. (a) Show that every cubic graph has an even number of vertices.
 - (b) Give a short note on Travelling salesman problem.
- 26. Show that a tree with n vertices has exactly n-1 edges.
- 27. Show that a graph has a dual if and only if it is planar.
- 28. Determine whether the relation R on a set of all people is reflexive, symmetric, anti symmetric and/or transitive where *Ry iff:
 - (a) x is taller than y = (b) x and y were born on the same day.
- 29. Write short notes on (a) network; (b) Max-flow min-cut theorem.
- 30. (a) Define walk, trail and path; (b) Show that every walk in a graph contains a path.
- 31. Show that G is Euler if and only if every vertex of G is even.

 $(5 \times 8 = 40 \text{ marks})$

